Future Simulation Scope

- The deliverables after 3 years will *include*
 - 1. Published analysis of electron test beam
 - 2. Published analysis of hadron test beam
 - 3. Code for generic energy flow algorithm
 - 4. Significant contributions to detector CDR and TDR
 - 5. Positions of responsibility in global LC software activity
 - 6. Report on simulations for other WPs (MAPs, DAQ, Mech.)
 - 7. Framework for physics analysis benchmarking of detector designs

Tasks

- 1. DESY test beam
- 2. Hadron test beam
- 3. Energy flow algorithms
- 4. Global detector design (using energy flow)
- 5. Integration with world LC software activities
- 6. Suppport of other WPs
- 7. Physics studies (supporting energy flow and global detector design tasks)

Task 1: DESY Test Beam

- 1. Establish analysis framework
- 2. Include (existing) digitisation code to mokka
- 3. First MC samples, electrons, ideal conditions (+cosmics?)
- 4. Understand beam environment
- 5. Understand wire chamber behaviour
- 6. Simple simulation of wire chamber in Mokka
- 7. MC samples, electrons, realistic conditions, incl. hodoscope
- 8. Comparison of MC/data, electrons and cosmics.

DESY Test Beam

Simulation Work Package		FY	'05		FY'	06		FY'07				
Quarter	1	2	3	4	1	2	3	4	1	2	3	4
1.1 Establish analysis framework	=											
1.2 Digitisation code in mokka	=											
1.3 1st ideal MC beam, cosmics	=											
1.4 Understand beam environment	=											
1.5 Understand wire chamber	=											
1.6 Implement wire chamber simulation	=											
1.7 Realistic MC samples	=											
1.8 Data/MC comparisons, e, cosmics	=	II	=									

Task 2: Hadron Test Beam

- 1. Maintain available hadronic shower codes
- 2. Report requirements to host lab. (beam energy, type, run schedule)
- 3. First MC samples, ideal beam conditions, 1-2 hadronic models
- 4. Understand beam environment (profile, energy spread, particle content)
- 5. Simulation of beam line environment
- 6. Second MC samples, realistic beam conditions, 1-2 hadronic models
- 7. Understand Cerenkov counters
- 8. Separation into specific samples (efficiency, purity), various impact positions
- 9. Large MC production, full set of models, as above
- 10. Compare models/data, decide best model(s), estimate uncertainties
- 11. Publish test beam results, impact on detector design

Hadron Test Beam

Simulation Work Package	FY'05					FY	' 06		FY'07				
Quarter	1	2	3	4	1	2	3	4	1	2	3	4	
2.1 Maintain hadron shower codes	=	=	=	=	11	"		=	=	=	=	II	
2.2 Report test beam requirements	=												
2.3 Small ideal MC samples		=	=										
2.4 Understand beamline		=	=										
2.5 Simulate beamline			=	=									
2.6 Realistic MC samples			=	=	=								
2.7 Understand Cerenkov counters				=	=								
2.8 Species specific samples				=	=	=							
2.9 Production MC, all models					=	=	=						
2.10 Compare data/all MC models					=	=	=	=	=				
2.11 Publish results, impact design								=	=				

Task 3: Energy Flow Algorithms

- 1. Review of existing work/code (SNARK, REPLIC, etc.)
- 2. Identify resolution limiting factors, simple physics benchmark processes (linking all detectors, but in limited regions, e.g. t decay, Z0 → jets, ...)
- 3. Algorithm brainstorming: at least 2 contrasting approaches to energy flow
- 4. Define tools required by algorithm (e.g. calo. clustering)
- 5. Controlled comparison, existing codes: single process/detector geometry
- 6. First implementation of single new algorithm
- 7. Understand interplay between hadronic modelling uncertainties / energy flow
- 8. Physics benchmark comparison, feedback on tools
- 9. Further algorithm development and evaluation/refinement

Energy Flow Algorithms

Simulation Work Package	FY'05					FY	'06		FY'07					
Quarter	1	2	3	4	1	2	3	4	1	2	3	4		
3.1 Review existing packages	=	=												
3.2 Resoln drivers; physics bench			=											
3.3 Brainstorming, >2 algorithms	=	=	=	=										
3.4 Define essential tools		=	=											
3.5 Existing algorithms study: 1 detector/process			=											
3.6 Implement 1 new algorithm				II	ш									
3.7 Hadronic modelling interplay					=	=								
3.8 Compare physics benchmarks						=	=							
3.9 Further development/evaluation							II	II	II	=	II	II		

Task 4: Global Detector Design

- 1. Identify complete physics benchmark processes include background rejection
- 2. Scope definition: input from concept proponents what is appropriate to vary (+ what is not)
- 3. Use first benchmark physics analysis first detector concept/parameter set
- 4. Analysis used for alternative detector concepts (through LCWS/ECFA-DESY, etc., not nec. by UK)
- 5. Extend study with additional physics benchmark analyses
- 6. Vary detector parameters, each conceptual design radius, sampling frequency, segmentation
- 7. Compare of results leading to optimal design for each concept

Global Detector Design

Simulation Work Package	FY'05					FY'	'06		FY'07				
Quarter	1	2	3	4	1	2	3	4	1	2	3	4	
4.1 Identify complete physics benchmarks	=	=											
4.2 Scope definition, all concepts		=	=										
4.3 1st benchmark study, 1 concept			=	=	=								
4.4 Analysis of alt. det. concepts				=	=								
4.5 Additional physics benchmarks					=	II	=	II					
4.6 Vary detector parameters, all concepts							п	п	II	11			
4.7 Comparison of results, optimisation				=	=		=	11	11	11	11	11	

Task 5: World Activity Integration

- 1. Participation in, and coordination of, software workshops as/when announced Will need significant travel funds!
- 2. Dissemination of UK simulation results/tools

Task 5: World Activity Integration

Simulation Work Package		'05			FY'	'06		FY'07				
Quarter	1	2	3	4	1	2	3	4	1	2	3	4
5.1 Workshop participation		II		=		11		II		11		=
5.2 Tools/Results dissemination			=		II		=		=		=	

Task 6: Support of other WPs

- 1. Add MAPS geometry to mokka
 Few wafer tests and whole detector
- 2. Study impact of DAQ design on local clustering, & etc.
- 3. Simulations of mechanical imperfections
- 4. Simulation studies supporting studies of alternative detector technologies (e.g. MAPS)

Task 6: Support of other WPs

Simulation Work Package	FY'05					FY	'06		FY'07				
Quarter	1	2	3	4	1	2	3	4	1	2	3	4	
6.1 Mokka implementation of MAPS concept	=	=	=										
6.2 Study of DAQ on local clustering				=	=	=							
6.3 Studies of mechanical imperfections			=				11		=				
6.4 Simulation studies supporting MAPS			=	=	=	=	11						

Task 7: Physics Studies

- 1. Define aspects of detector to be tested Intrinsic resolutions, particle separation Define set of complete physics benchmark processes
- 2. Implement simple, robust version of single analysis using generic tools

 Does not have to be "state-of-the-art"
- 3. Develop additional physics benchmark analyses
- 4. Understand interplay between hadronic modelling uncertainties and energy flow

Task 7: Physics Studies

Simulation Work Package		FY	'05			FY	'06		FY'07				
Quarter	1	2	3	4	1	2	3	4	1	2	3	4	
7.1 Define complete physics benchmarks	=	=											
7.2 Implement robust analysis with generic tools		11	II	II									
7.3 Additional physics benchmark analyses				=	=	=	11	11	11				
7.4 Investigate role of hadronic modelling					=	=	II	11	II	II	11		

Future Simulation Summary

- The deliverables after 3 years will *include*
 - 1. Published analysis of electron test beam
 - 2. Published analysis of hadron test beam
 - 3. Code for generic energy flow algorithm
 - 4. Significant contributions to detector CDR and TDR
 - 5. Positions of responsibility in global LC software activity
 - 6. Report on simulations for other WPs (MAPs, DAQ, Mech.)
 - 7. Framework for physics analysis benchmarking of detector designs