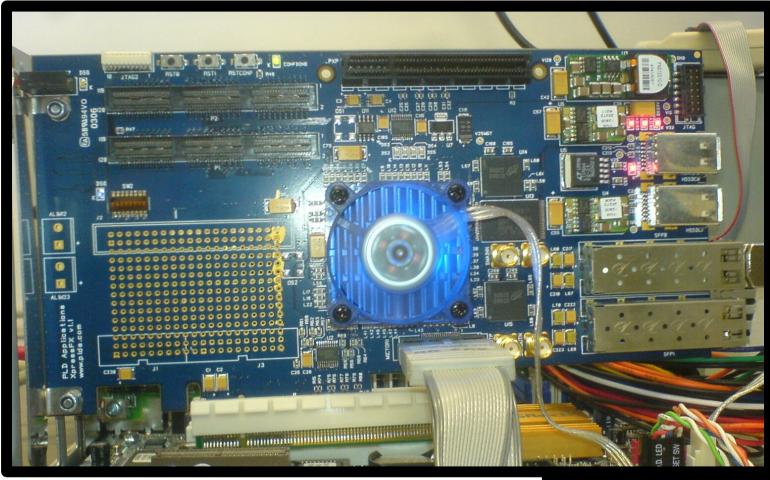


FPGAs and Networking

Marc Kelly & Richard Hughes-Jones

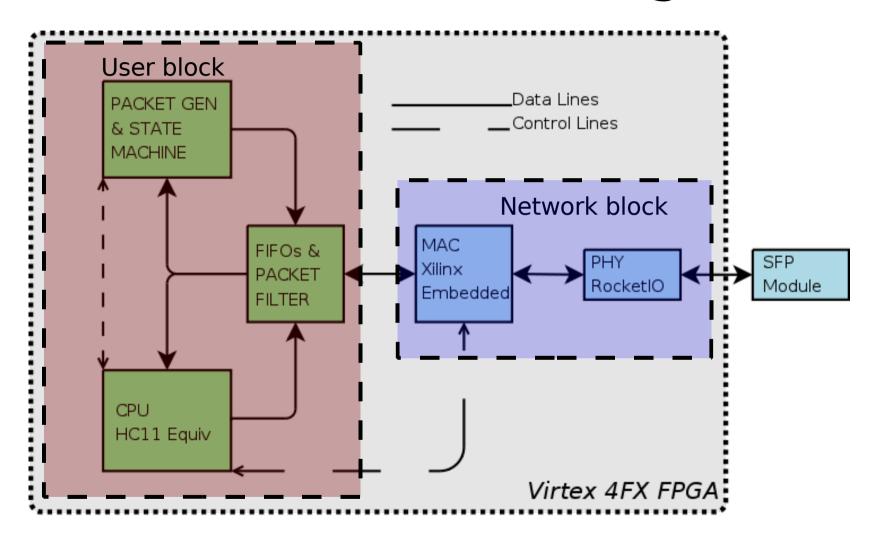
University of Manchester

Overview of Work

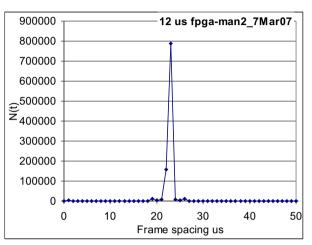

- Looking into the usage of FPGA's to directly connect to Ethernet for DAQ readout purposes.
- Testing both 1 and 10 Gig systems.
- Evaluating the new generation of PCIExpress 10Gig Ethernet cards.
- Bringing it all together to form a test system.

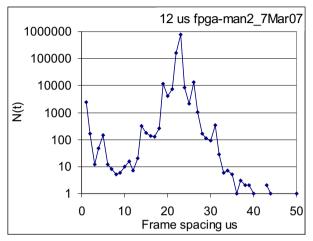
Network Virtex4 Test Board

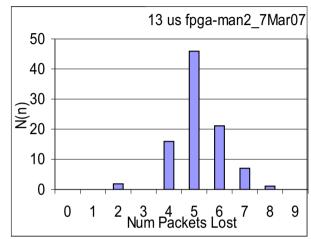
1 Gig FPGA Work


- Implemented a MAC + PHY layer inside Xilinx Virtex4 FPGA.
- Demonstrated working Ethernet between FPGA and remote hosts, however the learning curve is steep, issues with the Xilinx "CoreGen" design.
- Adaptable testing design with Network and "User" FPGA logic separated
- Once working it has proved reliable, the Network code as survived many "respins" of the design without failing.

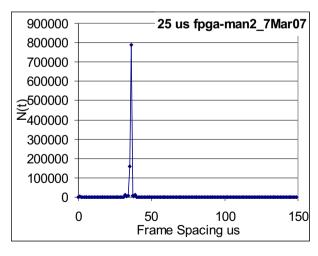
Overview of Design

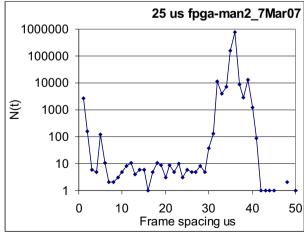

The University of Manchester

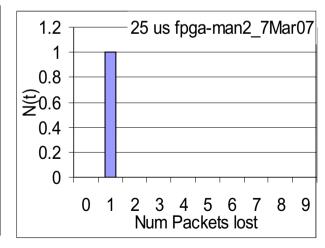



Receiver Frame Jitter and Packet Loss

◆ 12 us (line speed) Frame Jitter







25 us frame spacingPeak separation 4-5 us no coalescence

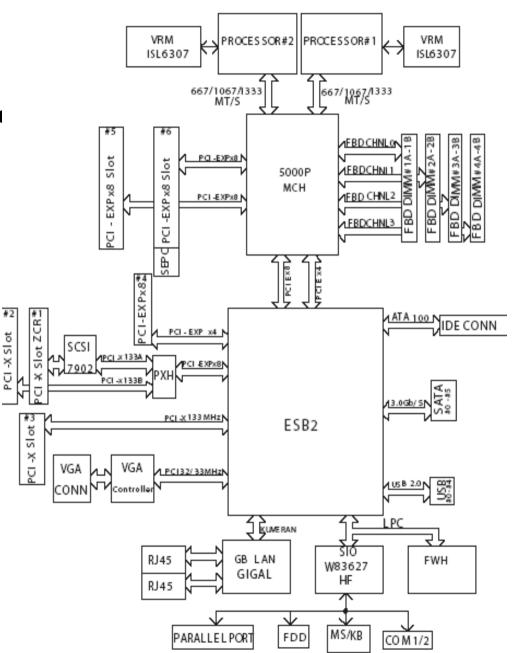
Plots by Richard, stolen from one of his talks.

1 Gig FPGA Work

- FPGAs can drive Ethernet. It is easy once configuration hurdle is passed.
- More testing under way. Request response style operations to pull data out FPGA to simulate an event building scenario.
- Planned Upgrade to 10Gig Ethernet. Do all tests at 10Gig.
- Perform some initial testing to try to determine the stability of the RocketIO TX/RX latency.

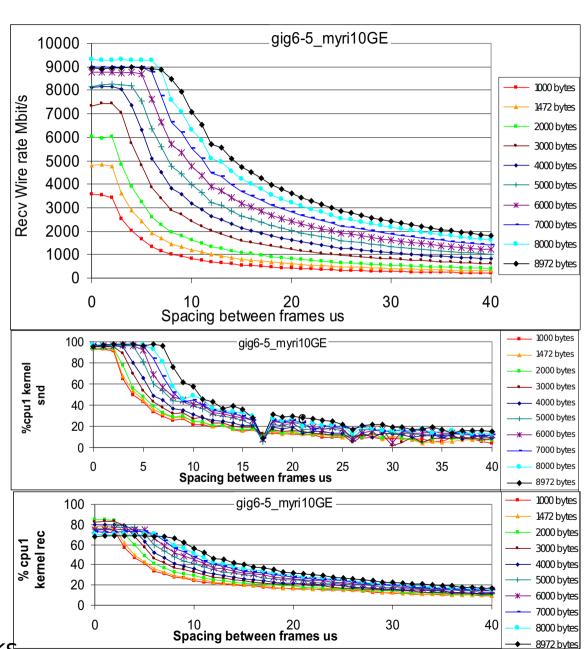
10Gig Ethernet Work

- Richard has nice new 10Gig PCI Express cards made my Myricom. 8xLane design, in theory that has more than enough bandwidth to deal with 10Gig link.
- Using loaned high end servers as host machines.
- Performing standard network testing operations using his normal tools.
- Aim is to determine the suitability of 10Gig systems.



High-end Server PCs

- Boston/Supermicro X7DBE
- Two Dual Core Intel Xeon Woods
 - 2 GHz
 - Independent 1.33GHz FSBuses
- 530 MHz FD Memory (serial)
 - Parallel access to 4 banks
- Chipsets: Intel 5000P MCH – PCIe & Memory ESB2 – PCI-X GE etc.
- PCI
 - 3 8 lane PCle buses
 - 3* 133 MHz PCI-X
- 2 Gigabit Ethernet
- SATA

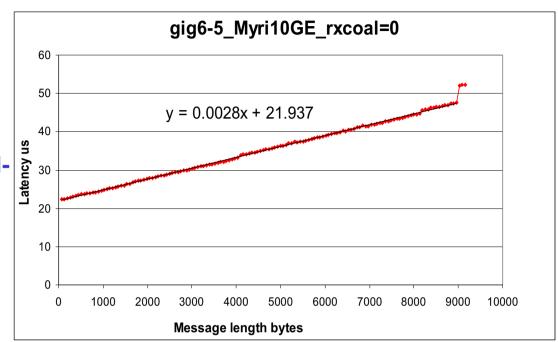


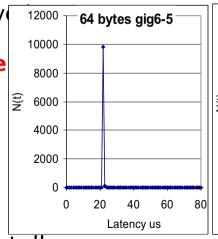
MANCHESTER 1824

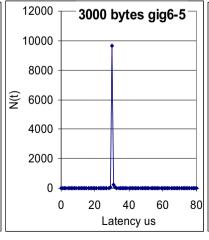
10 GigE Back2Back: UDP Throughp

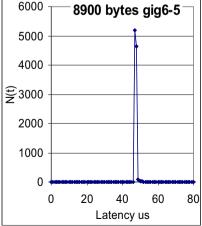
1 PULL E

- Kernel 2.6.20-web100_pktdplus
- Myricom 10G-PCIE-8A-R Fibre
 - rx-usecs=25 Coalescence ON
- MTU 9000 bytes
- Max throughput 9.4 Gbit/s
- Notice rate for 8972 byte packet
- ~0.002% packet loss in 10M packets in receiving host
- Sending host, 3 CPUs idle
- For <8 µs packets,
 1 CPU is >90% in kernel mode inc ~10% soft int
- Receiving host 3 CPUs idle
- For <8 µs packets,
 1 CPU is 70-80% in kernel mode inc ~15% soft int

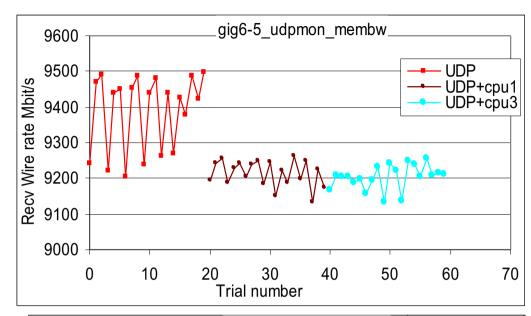

By Richard, stolen from one of his talks.

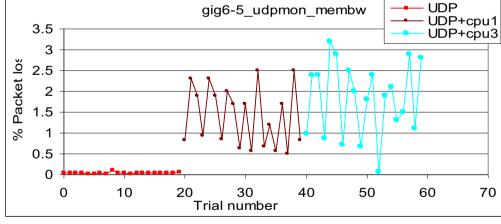

10 GigE Back2Back: UDP Latency




- Motherboard: Supermicro X7DBE
- Chipset: Intel 5000P MCH
- CPU: 2 Dual Intel Xeon 51302 GHz with 4096k L2 cache
- Mem bus: 2 independent 1.33 GHz
- PCI-e 8 lane
- Linux Kernel 2.6.20-web100_pktdplus
- **♦** Myricom NIC 10G-PCIE-8A-R Fibre
- myri10ge v1.2.0 + firmware v1.4.10
 - rx-usecs=0 Coalescence OFF
 - MSI=1
 - Checksums ON
 - tx_boundary=4096
- MTU 9000 bytes

- ♦ Histogram FWHM ~1-2 us
- Latency 22 μs & very well behave
- Latency Slope 0.0028 μs/byte
- ♦ B2B Expect: 0.00268 μs/byte
 - Mem 0.0004
 - PCI-e 0.00054
 - 10GigE 0.0008
 - PCI-e 0.00054
 - Mem 0.0004


By Richard, stolen from one of his talks.



B2B UDP with memory access

- Send UDP traffic B2B with 10GE
- On receiver run independent memory write task
 - L2 Cache 4096 k Byte
 - Write 8000k Byte blocks in loop
 - 100% user mode
- Achievable UDP Throughput
 - mean 9.39 Gb/s sigma 106
 - mean 9.21 Gb/s sigma 37
 - mean 9.2 sigma 30
- Packet loss
 - mean 0.04%
 - mean 1.4 %
 - mean 1.8 %
- CPU load:


```
Cpu0
        6.0% us, 74.7% sy,
                            0.0% ni,
                                       0.3% id,
                                                 0.0% wa,
                                                           1.3% hi, 17.7% si,
                                                                               0.0% st
                                                 0.0% wa,
        0.0% us, 0.0% sv,
                            0.0% ni, 100.0% id,
                                                           0.0% hi, 0.0% si,
                                                                               0.0% st
Cpu1
Cpu2
        0.0% us, 0.0% sy,
                            0.0% ni, 100.0% id,
                                                 0.0% wa,
                                                           0.0% hi,
                                                                     0.0% si,
                                                                               0.0% st
    : 100.0% us, 0.0% sy,
                            0.0% ni, 0.0% id,
                                                 0.0% wa,
                                                           0.0% hi,
                                                                     0.0% si,
                                                                               0.0% st
Cpu3
```


10Gig Ethernet Work

- New generation of servers are capable of supporting 10Gig Ethernet, doing real work and NOT being overloaded.
- New generation of Cards are very capable of supporting 10Gig Ethernet.
- Things are however Chipset/Server design dependant. Have to make sure the architecture is sound. High bandwidth, low contention designs needed.
- Need modern host OS, latest drivers etc.

Future Things

- More detailed DAQ development.
- Continued Ethernet work. Finish 1Gig studies and start 10Gig FPGA work. Need to determine if 10Gig upgrade is 100% possible with current board.
- Examining options for the "Link Data Aggregation" board in collaboration with the other DAQ people involved.
- Work on "LDA" link protocol to determine if constant latency system can be bought/built easily.