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Overview

● Introduction
● Status

– Sensor Design

– Sensor Simulation

– DAQ/Testing

– Detector Simulations
● Next steps



Marcel Stanitzki3

Introduction

● Development of an alternative readout sensor for 
the CALICE ECAL

● “Swap-In” Solution leaving mechanical structure 
untouched

● Use of MAPS with high granularity and digital 
readout
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What are MAPS ?

● Monolithic Active Pixel Sensors
● Integration of Sensor and Readout Electronics 
● Manufactured in Standard CMOS process
● Collects charge mainly by diffusion 
● Development started in the mid-nineties, now a 

mature technology
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Hybrid Pixels and MAPS 

Pixels

Bump 
Bonds

Readout Electronics

LHC-style 
Hybrid Pixel 

sensor

MAPS 
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MAPS in Detail
Incoming 
particleDiodes
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MAPS architecture:
● Sensor and the electronics are integrated in one wafer
● Charge Collection mainly in epi-layer
● Charge collected mostly due to diffusion
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The CALICE MAPS

● Pixel Size (50 x 50 µ)
● Binary Readout (1 bit ADC realized as Comparator)
● 4 Diodes for Charge Collection
● 13 bit Time Stamping
● Hit buffering for entire bunch train
● Capability to mask individual pixels
● Threshold adjustment for each pixel

For the CALICE ECAL a specific MAPS was designed:
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A new process technology

● Simulation showed, 
that the n-wells absorb 
a lot of charge (hence 
affecting the signal)

● We isolated the n-well 
with a “deep p-well” 
implant (3 µm thick)

● Novel INMAPS process 
used for the CALICE 
MAPS
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Sensor Electronics
● Two types of pixel readout
● Shaper & Sample

● Average deadtime (~600 ns/ 450 ns  )
● Simulation shows similar noise characteristics
● Both share the Comparator design
● Having two readout architectures allows us to 

explore several ideas at once

Pre-Shaper Pre-Sampler
Deadtime Varies with Signal Constant
Reset Self-resetting Active reset
Diode mode Current Voltage
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The two pixels
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The Pixel

● 50x50 µm size
● 0.18 µm process
● 12 µm Epi-layer
● Deep p-wells
● 5 metal layers
● 224 1.8 V transistors
● 1 3.3 V transistor
● 36 capacitors
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The test sensor (V1.0)

● Consists of 42x84 pixels
● Has a logic strip for 

– 5 pixels wide

– Hit buffering using SRAM 
technology

– Time stamping (13 bit)

– Configuration registers

– the only part with Clock lines
● Logic strip is a “dead area” for 

particle detection 
(~ 11 % inefficiency) Pixels

Logic Strip

42 pixels 5 pixels
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The test structure (V1.0)

Wafer

Pre-Sample
Architecture

Pre-Shaper
Architecture

Area for test structures
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Sensor Simulation

● We are using Centaurus TCAD  to simulate the 
sensor

● Using CADENCE GDS file for pixel description
● Simulate diodes from adjacent pixels for 

charge sharing effects
● Detailed Pixel performance studies

– Collection Efficiency

– Charge Collection Time

– Signal/Noise
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Diode placement

● Classical problem

– Place n circles in a square

– No analytical solution
● Only 4 Diodes as a starter
● Mathematics faces reality

– Constraints due to Design 
Rules

– Electronics

– Space
Numerical Solution
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The setup

Bias:
•n-Well 1.8/1V
•Diodes: 1.5V

Diodes
Adjacent 
Diodes

Electronics

Substrate

Epi-Layer
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Simulation Setup

7 Hit Points simulated
1 µm distance
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Main parameter to vary is Diode Size ILC Bunch spacing ~ 300 ns
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MAPS DAQ & Testing

● Development of  DAQ board and firmware has 
started

● Complete test setup foreseen

– Cosmics

– Sources

– Laser

– Test beam
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RAL Laser Test setup

● Powerful Laser setup
● 1064, 532 and 355 nm 

Wavelength
● Accurate focusing 

(<2 µm)
● 50 Hz Repetition rate
● Fully automatized
● Will be used to test the 

CALICE MAPS
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Detector Simulation

● Implementation of the MAPS into GEANT/MOKKA

– Patched MOKKA 6.02
● 50x50 µm pixel size
● 15 µm “Active Area” (Epi-layer)
● Detector Model used LDC01(Sc)
● ECAL with 30 layers

– 20 layers 2.1 mm Tungsten 

– 10 layers 4.2 mm Tungsten
● Charge diffusion and thresholds are implemented in 

a separate “Digitization” step
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Shower Shapes

GEANT4 : One 20 GeV Electron shot along y-axis
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Spatial resolution in x

Moliere Radius

Impact of B field

GEANT4 :20 GeV Electrons shot along y-axis
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Linear Response

Linear response for electrons up to 400 GeV
GEANT4 level without charge diffusion
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Resolution

Good resolution over wide energy range
GEANT4 level without charge diffusion
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Noise Occupancy

● Noise for 2880 bunches
● Vary noise probability
● With Noise=O(10-6)

– P=0.3 % for 1 hit per pixel

– P=0.0004 % for 2 hit per 
pixel

● But O(1012) pixels !

– ~3 109 single hits

– ~4 106 double hits

– ~0 triple hits
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Charge sharing algorithm

Geant4 Einit

in 5x5 μm² cells

Sum energy in 
50x50 μm² cells

Esum 

Apply charge spread
Eafter charge spread

Add noise to signal hits
with σ = 90 eV

(1 e- ~ 3 eV  30e- noise)

+ noise only hits 
prob. 10-6  ~ 106 hits in the whole detector

BUT in 
a 1 cm² tower : ~30 hits in 30 layers.

%Einit

%Einit

%Einit %Einit

%Einit

%Einit %Einit

%Einit

Einit

Register the position and the number 
of hits above threshold initneighbours EE  %)80%50(~
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First results

● Algorithm depends on 
accurate simulation 
input from Centaurus 

● First results shows 
algorithm work nicely

● Does not take into 
account deep p-well yet

● Will be updated with 
the latest pixel 
simulations and noise 
estimates
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Basic Hit Clustering

Hit Clustering
• Loop over hits classified by number of 

neighbors
• Number of neighbors < 8 :

count only 1 (or 2 for last 10 layers) and 
discard the neighbors

• 8 neighbors AND one of the neighbor 
has 8 neighbors : 
count 2 (or 4) and discard the neighbors

Number of neighbours

x

3 or 4

Total : 11 or 12,
instead of 37.
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Particle Flow

● Extending PandoraPFA to 
handle Digital ECAL hits

● First development version is 
running

● Lots of things to improve

– Calibration of MAPS response 
is critical

– Optimize clustering for MAPS

– Particle ID needs modifications

– Take advantage of MAPS 
resolution

σ
E
/√E 0.36+0.01 for 

Z->uds at 91 GeV 
in the ECAL barrel
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Design Issues

● Pixel parameters

– Pixel size

– Number of Diodes / Diode size
● PCB/Readout Chips
● Module structure
● Cooling
● Manufacturing
● Cost 
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Pixel parameters

● MAPS Pixels improve spatial resolution/granularity
by a factor of ~ 1000  compared to analog pad 
ECAL

● Lower pixel size is set by size of the integrated 
electronics (lower boundary of 50 µm)

● Upper bound set by charge collection 
time/efficiency and multiple hits

● No fixed upper bound, reasonable value is around 
100 µm

● Best performance found with 4 diodes and 1.8 µm 
diode size
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PCB/ Readout Chip

● All the electronics is integrated within the the 
sensor

● No need for

– Complicated PCB design 

– Dedicated Readout Chip
● Still needs to provide Power/Clocks/Commands to 

the MAPS
● Can be done by “Stave Controller” at the end of the 

Stave
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Stave Structure

T u n g s t e n
1 . 4  m m

P C B
~ 0 . 8  m m

E m b e d d e d  V F E  A S I C

S i l i c o n  s e n s o r
0 . 3 m m

D i o d e  p a d  c a l o r i m e t e r M A P S  c a l o r i m e t e r

● MAPS can be used as swap-in solution without 
alterations to the mechanical design (Baseline)

● One can also take further use of MAPS benefits
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How it could look like

● Take advantage of MAPS benefits
● Lack of hybrids/ASIC allow less complex/thinner PCB
● Thinner sensors (down to 100 µm)
● Bump-bond MAPS

MAPS

Tungsten

Stave Controller
with optical linkPCB
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Cooling

● Cooling for the ECAL is a general issue
● Power Savings due to Duty Cycle (1%)
● Target Value for baseline ECAL 4 µW/mm2

● Current Consumption of MAPS ECAL: 60 µW/mm2 

depending on pixel technology
● Compared to analog pad ECAL

– Factor 1000 more Channels

– Factor 10 more power
● Advantage: Heat load is spread evenly
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Manufacturing & Costs

● Less complex structure due to lack of VFE ASIC
● Need for large scale process (2000-3000 m2)
● CMOS is an industry standard process
● Many foundries can do it
● CMOS wafers are readily available
● CMOS is ~2 cheaper than “HEP-style” silicon
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What happens next ?

● Submit Sensor  V1.0 Mid April
● Sensor V1.0 due back Mid July
● Improve/enhance GEANT simulation
● Testing Sensor V1.0
● Do physics analyses with a MAPS based ECAL 
● Improve sensor simulation with data from V1.0
● Design Sensor V2.0 using all the experience made 

with V1.0 
● Submit Sensor V2.0
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Summary

● MAPS effort is advancing well
● Sensor V1.0 is almost done
● Simulation of MAPS based ECAL made huge 

progress
● Still quite some challenges ahead 
● Interested to work on MAPS ? Contact us !
● Thanks to everyone in the MAPS group for their 

help in preparing the talk
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Backup



Marcel Stanitzki42

Beam background

● Owen ?
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Cooling cont'd

1E+06 1E+07 1E+08 1E+09 1E+10 1E+11 1E+12
1E+02

1E+03

1E+04

1E+05

1E+06

1E+07

1E+08

Analog Pads

MAPS

Channels
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MAPS vs Baseline

Baseline MAPS
Sensor material high resistivity CMOS
Pixel size 5 x 5 mm
Readout type analog digital
Readout Channels
Power consumption

50 x 50 µm

8x107 1012
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Dead area
● We need 5 dead pixels every ~42 sensitive pixels 

(under study) for the pixels logic.

σ(E)/E = α/√E
α = 0.1561 asymptotical value
α = 0.161 @ 42 sensitive pixels

 3 % increase : we can live
with that !!
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DAQ data volume

● Physics rate is not the limiting factor  
● Beam background and Noise will dominate
● Assuming 2880 bunches and 25 bits per Hit

– 106 Noise hits per bunch

– ~O(1000) Hits from Beam background per bunch 
(estimated)

● Per bunch train 

– ~9 Gigabyte Data

– Readout Required 41 GB/s

– CDF SVX-II can do 18 GB/s already


