

2005 IEEE Workshop on CCD and AIS

CMOS Sensors for High Energy Physics

P.P. Allport^b, G. Casse^b, A. Evans^b, L. Jones^a, R.Turchetta^{a*}, M.Tyndel^a, J.J. Velthuis^b, G. Villani^a, F. Zakopoulos^a

^a Rutherford Appleton Laboratory, United Kingdom
^b University of Liverpool, United Kingdom

Presented by Renato Turchetta CCLRC - RAL

Outline

Introduction. Detectors for Particle Physics Requirements Results Noise Radiation hardness CMOS sensors with in-pixel storage: Flexible APS (FAPS)

Conclusions

Particle, or High-Energy, Physics

'Big science' projects: large particle accelerators (Ø km), large international (world-wide) collaborations.

High-energy particles (\uparrow TeV) collide \rightarrow new particles are created \rightarrow insight into ultimate structure of matter.

Detectors are large apparatus (size ~m) with cylindrical symmetry and several subdetectors.

CMOS sensors for particle detection Radiation

Requirements

- 1) Efficiency: 100% or close
- 2) Noise: signal ~ 100s e-/h pairs
- 3) Radiation hardness: Mrad and beyond
- 4) Speed: 'frame rate' > $10^{6}/sec$
- 5) Large area: side \sim cm's

4

RAL Sensors for Particle Physics

2005 IEEE Workshop on CCD and AIS, Nagano, Japan

Parametric test sensor: RAL_HEPAPS family

- RAL_HEPAPS2: 0.25 μm CIS, 8 μm epitaxial layer, 384*224 pixels, 15 μm pitch: 3MOS, 4MOS, ChargePreAmplifier (CPA), Flexible APS (FAPS, 20 μm pitch)
- RAL_HEPAPS3: 0.25 μ m MM, no epitaxial layer, 192*192 pixels, 15 μ m pitch: 3MOS, 4MOS, Deep N-well diodes

Test sensors

RAL_HEPAPS4: 0.35 μm CIS, 20 μm epitaxial layer, 1026*384 pixels, 15 μm pitch. 3 versions: 1, 2 or 4 diodes per pixel. Rad-hard, 5MHz row rate (now in manufacturing)

5

6

Soft and hard reset

Radiation hardness

Diodes.

Radiation damage increases leakage current
Radiation damage reduces minority carrier lifetime →
diffusion distance is reduced

Single pixel S/N dependence on impact point. 1

- S/N varies over pixel between 12 and 4 before irradiation.
- S drops to zero at edges after 10¹⁴ p/cm².

G. Villani (RAL)

Single pixel S/N dependence on impact point. 2

- Less variation in S/N varies over pixel before and after irradiation.
- S at edges still usable after 10¹⁵ p/cm².

G. Villani (RAL)

Signal from individual particles

Beta source (Ru106) test results. Sensors HEPAPS2.

Cluster in S/N

Signal spread

Distribution of signals

From different types of pixels. HEPAPS2

Туре	Specs	S	Ν	S/N
3MOS E	4 diodes	99	4.94	20.1
3MOS C	GAA	87	4.85	18.0
3MOS B	Diode 1.2x1.2	92	3.87	23.8
3MOS A	Diode 3x3	67	3.31	20.3
4MOS C	Lower V_{T}	101	4.14	24.4
4MOS B	Higher V_T	114	4.70	24.2
4MOS A	Reference	111	4.45	25.0

Typical 'Landau distribution

•

Radiation test. Source results

- Noise seems to increase slightly with dose.
- Signal decreases with dose.

3MOSA	3x3 μm²
3MOSB	1.2x1.2 μm ²
3MOSC	GAA
3MOSE	4 diodes
4MOSA	Reference
4MOSB	Higher V_{T}
4MOSC	Lower V _T

- Sensors yield reasonable S/N up to 10¹⁴ p/cm²
- 0.35 μm technology in the pixel transistors. Enclosed layout in 3MOS_E
- S/N reduction seems to be dominated by charge collection
- Especially 3MOS_E (4 diodes) looks interesting
 - Larger capacitance yields larger noise
 - Four diodes: less dependence of S/N on impact point
 - After irradiation remains a larger "sensitive area"

J. Velthuis (Liv)

13

Flexible Active Pixel Sensor

Design for the Vertex detector at the International Linear Collider

FAPS. Signal distribution

- Test with source
- Correlated Double Sampling readout (subtract S_{cell 1})
- Correct remaining common mode and pedestal
- Calculate random noise
 - Sigma of pedestal and common mode corrected output
- Cluster definition
 - Signal >8σ seed
 - Signal >2σ next
- Note hit in cell *i* also present in cell *i*+1.
- S/N_{cell} between 14.7±0.4 and 17.0±0.3

Future experiments

International Linear Collider: CMOS sensors proposed for Vertex and Electromagnetic calorimeter.

Large area (stitched) sensor required in both cases.

Total covered area: $\sim m^2$ for Vertex, a few $10^4 m^2$ for Electromagnetic calorimeter Radiation hardness: moderate (~100s kRad, $10^{12} n/cm^2$)

Conclusions

Parametric test sensors used to study noise, radiation hardness, new designs.

Radiation hardness \rightarrow 10¹⁴ p/cm²

Noise < 20 e- rms (soft reset in dark)

Three versions for radiation hardness of fast (5MHz/line), rad-hard, large (1024*384) sensor (RAL_HEPAPS4) in manufacturing

Future experiments will require stitched sensors. Large area coverage \rightarrow 10⁴ m²

CMOS technology would provide the solution for coverage of large areas with pixel detectors.

FAPS Hit resolution

- Hit Resolution≠spatial resolution!!!
- Take hits found in cell 2
- Reconstruct x and y each cell using Centre-of-Gravity
- Calculate average hit position
- Determine residual position for each memory cell
- Hit resolution approximately 1.3 μm

J. Velthuis (Liv)

FAPS efficiency estimate

- · Find hits in all cells
- Plot max S/N_{pixel} in 3x3 area around expected hit position if hit not found
- Define:

 $Missed = \frac{\#missed \ seed \ cut}{\#seeds \ cell \ (i-1)}$

 Clearly, strongly dependent on seed cut. Lowering seed cut to 5σ yields inefficiency ranging between 0.08±0.08% and 0.5±0.1%

Radiation test

- Irradiated APS2 up to 10¹⁵ p/cm² at CERN.
 - 10¹² p/cm² ILC requirement
 - 2x10¹⁵ p/cm² 10 years ATLAS pixel layer
- Repeat analysis at each dose with same cuts

Dose (p/cm ²)	#APS2
0	3
1e11	4
1e12	4
1e13	4
5e13	4
1e14	2
2e14	2
5e14	2
1e15	2

- Seed > 8σ
- Neighbour > 2σ

Radiation test. Leakage current measurements

- Slope is due to leakage current
 - Measure pedestal-reset(time)
 - Fit straight line
 - Plot average slope versus dose
- No significant increase in leakage current.

