

CMOS Image Sensors for Scientific Applications

Dr Renato Turchetta CMOS Sensor Design Group CCLRC Technology

Outline

¾ **Introduction.**

¾ **CMOS for radiation detection in scientific applications**

Visible light UV

X-ray Charged particles

- ¾ **Advanced pixels**
- ¾ **Conclusions**

CCLRC-RAL

CCLRC is one of Europe's largest multidisciplinary research organisations. It owns and operates three laboratories.

Rutherford Appleton Laboratory (RAL) is the largest one.

Technology department providing engineering solutions for UK, European and world-wide research institutes and large facilities: CERN, ESRF, ESA, NASA, …

Main activity on radiation detectors and readout electronics: CCD, hybrid active pixel sensors, CMOS image sensors.

CMOS Image sensors started in 1999 with the design of a StarTracker.

Outline

¾ **CMOS for radiation detection in scientific applications**

Visible light UV X-ray Charged particles ¾ **Advanced pixels** ¾ **Conclusions**

CMOS sensors for radiation detectors

Photons

Good efficiency up to 'low' energy X-rays. For higher energy (or neutrons), add scintillator or other material.

Need removal of substrate for detection of UV, low energy electrons.

For higher energy photons, number of N electron-hole pairs generated is proportional to absorbed energy ∆E with proportionality constant $W = 3.6$ eV / pair

$$
N = \Delta E / W
$$

Higher absorption by adding absorber (scintillator) or hybrid solution (detector bump-bonded to electronics).

Charged particles in silicon

Energy loss vs particle energy in silicon Most probable value $\begin{array}{c} \text{Energy loss distribution} \\ \text{B}^{\alpha_2} \\ \text{B}^{\alpha_3} \end{array}$ Landau curve *Landau curve* 1280 pm. ×100 0.1 å 0.05 w, 320 um, ×10 $\ddot{\mathbf{0}}$ 80 µm, ×10 Ŀ5 $\ddot{\mathbf{0}}$ S ١ö 20 E (arbitrary scale) $10 \mu m$ $N = \Delta E / W$, again! 10^{-7} (from H. Bichsel) $\frac{M}{2}$ $\frac{1}{2}$ $\frac{M}{2}$ $\frac{N}{2}$ \frac

Applications for RAL CMOS APS

- o Space science: Star Tracker, ESA Solar Orbiter, …
- o Earth Observation: $3 \mu m$ pixel linear sensors, ..
- o Particle Physics: ILC, vertex and calorimeter (CALICE), SLHC, …
- o Biology: electron microscopy, neuron imaging
- o Medicine: mammography, panoramic dental
- o …

Detecting:

- \triangleright Photons
- \triangleright Charged particles
- ¾ Voltages (!)

CMOS sensors requirements. 1

- \triangleright Wide dynamic range: \rightarrow 16 bits and beyond
- \geq Low noise: < 10 e- rms \rightarrow < 1 e- rms ?
- \triangleright Radiation hardness: Mrad and beyond
- \triangleright Speed: data rate in excess of 50 MB/sec \rightarrow 500 MB/sec and beyond

Short integration time and gating \rightarrow ns

- \geq Large pixels: >10 µm \rightarrow 50 µm
- \triangleright No data compression or lossless compression
- \triangleright Large volume of data: 100s MB/sec for minutes, hours, ...
- \triangleright Images can be mainly dark with only a few bright spots

CMOS sensors requirements. 2

- \triangleright Requires advanced pixel designs
- \triangleright In-pixel data reduction
- \triangleright Only NMOS in pixel if 100% efficiency for charged particle detection is required
- \geq Large area: side \sim cm's; no focusing possible for X-ray or charged particles
- \triangleright SOI on high resistivity handle wafers \rightarrow full CMOS
- \triangleright Semiconductor deposition

Outline

¾ **Introduction.**

¾ **CMOS for radiation detection in scientific applications**

Visible light UV

X-ray Charged particles

- ¾ **Advanced pixels**
- ¾ **Conclusions**

Optical tweezers

Y value 130 nm

╇

Y

 \triangleright Particles are optically trapped and controlled \rightarrow molecular forces at picoNewton level and position resolution \leq 1 nm

 \triangleright Applications in medicine, cell biology. DNA studies, physical chemistry, …

Vanilla **sensor.**

- \triangleright Large pixels: 25 µm, design in 0.35 µm CMOS
- \triangleright Format 512x512 (\rightarrow StarTracker) + black pixels
- ¾ 3T pixel with flushed reset
- \triangleright Noise < 25 e- Full well capacity > 10⁵ e- DR ~ 4000 ~ 12 bits
- ¾ On-chip SAR ADCs, one for 4 columns with column-FPN control. Selectable resolution: 10 or 12. Adjustable range.
- \triangleright Analogue output at 4.5 MHz
- \triangleright Row and column address decoder
- ¾ *Full frame readout*: Frame rate > 100 fps.
- ¾ *Region-of-interest readout*: Fully programmable. Example speed: six 6x6 regions of interest @ 20k fps
- \triangleright Two-sided buttable for 2x2 mosaic
- ¾ Design for backthinning
- \triangleright Detecting capability not limited to visible light!

Outline

- ¾ **Introduction.**
- ¾ **CMOS for radiation detection in scientific applications**

Visible light UV

X-ray Charged particles

- ¾ **Advanced pixels**
- ¾ **Conclusions**

ESA Solar Orbiter

Study of the Sun's atmosphere and heliosphere \triangleright Study the Sun from close up (45 solar radii) or 0.21 AU) \rightarrow pixel size of 35 km on the Sun or 0.05 arcsec from Earth

- \blacktriangleright Launch in 2015, mission completed in 2024
- \triangleright Among the objective: observation of the sun into the EUV band (down to 170 nm)
- \triangleright High radiation environment
- \triangleright High resolution \rightarrow large format (4kx4k or 2k $*$ 2k)
- \triangleright linearity
- ≥ 14 -bit dynamic range
- \triangleright low noise
- \triangleright good uniformity
- \triangleright low power

Lead technology scientist: Dr. N. Waltham

CMOS Sensors for Solar Orbiter

Design of sensors

 \ge 2002: 4k x 3k, 5 µm pixels in 0.25 µm CMOS, 8 µm epitaxial wafers

¾ 2005: 1.5k x 0.5k, 10 µm pixels in 0.35 µm CMOS, 14 and 20 µm epitaxial wafers

Enhancing EUV sensitivity

Backthinning (collaboration with e2v)

- \geq 2002: on 512x512 StarTracker, 4 μ m epitaxial wafers
- \geq 2004/5: on 4kx3k

Front etching

 \geq 2002: on 512x512 StarTracker, 4 μ m epitaxial wafers, by Focused Ion Beam (FIB)

Enhancing UV sensitivity

Front-illuminated Back-illuminated

4kx3k sensor

Fill factor better than 75% achieved on a 5 µm pixel (1 PMOS transistor + back-illumination)

QE better than 20% at 200 nm

No AR coating used

Back-illuminated image was taken through a 50nm filter at 350nm

Outline

¾ **Introduction.** ¾ **CMOS for radiation detection in scientific applications Visible light UV X-ray Charged particles** ¾ **Advanced pixels**

¾ **Conclusions**

Medical X-ray detection

Project I-ImaS (http://www.i-imas.ucl.ac.uk) funded by EU Application: mammography, dental (panoramic and cephalography) Scanning system with real-time data analysis to optimised dose uptake Step-and-shoot, not TDI Time for 1 image: a few seconds Large pixels: 32 um Image area: 18cmx24cm covered by several sensors in several steps Image size: $5120x7680 = 40$ Mpixel/image @ 14 bits, ~70MBytes Integration time per pixel: 10 ms

1.5 D CMOS sensor

Outline

Detection of charged particles

Low energy particles, e.g. a few keV electrons, requires backthinning and backillumination.

High energy traverses front layers of passivation. See examples below

Energy loss distribution

Intermediate energy electron detection

StarTracker 512x512 pixels, 25 um pitch, 0.5 um CMOS, 4 um epitaxial layer

Particle, or High-Energy, Physics

'Big science' projects: large particle accelerators (Ø km), large international (world-wide) collaborations.

High-energy particles (\uparrow TeV) collide \rightarrow new particles are created \rightarrow insight into ultimate structure of matter.

Detectors are large apparatus (size ~m) with cylindrical symmetry and several sub-detectors.

Example of CMS at the Large Hadron Collider

CMOS Image Sensors for Particle Physics

First proposed end of 1999

Low noise detection of MIPs first demonstrated in 2001 with a 3T pixel Since then, with a number of technologies/epi thickness:

AMS 0.6/14, 0.35/∞, 0.35/14, 0.35/20, AMIS (former MIETEC) 0.35/4, IBM 0.25/2, TSMC 0.35/10, 0.25/8, 0.25/∞, UMC 0.18/∞

Noise <~ 10 e- rms with off-chip, sp resolution vs pixel size off-line CDS Engle Point Resolution (um) 5.6 Spatial resolution 1.5 μ m 4.6 $@$ 20 $µm$ pitch, with full analogue readout з. Good radiation hardness 2.6 Low power Speed: rolling shutter can be a limit Pixel Size (um)

RAL Sensors for Particle Physics

Parametric test sensor: RAL_HEPAPS family

- RAL_HEPAPS2: 0.25 µm CIS, 8 µm epitaxial layer, 384*224 pixels, 15 µm pitch: 3MOS, 4MOS, ChargePreAmplifier (CPA), Flexible APS (FAPS, 20 μ m pitch) \blacksquare
- RAL_HEPAPS3: $0.25 \mu m$ MM, no epitaxial layer, 192*192 pixels, 15 µm pitch: 3MOS, 4MOS, Deep N-well diodes

Test sensors

RAL_HEPAPS4: $0.35 \mu m$ CIS, 20 μm epitaxial layer, 1026*384 pixels, 15 µm pitch. 3 versions: 1, 2 or 4 diodes per pixel. Rad-hard, 5MHz row rate (now in manufacturing)

Soft **and** *hard* **reset**

Radiation hardness

Transistors.

Threshold shift: reduces with shrinking feature size

Bird's beak effect: use enclosed geometry transistors

Transistor leakage current: use guard-rings to separate transistors

Diodes.

Radiation damage increases leakage current

Radiation damage reduces minority carrier lifetime \rightarrow diffusion distance is reduced

Single pixel S/N dependence on impact point. 1

- S/N varies over pixel between 12 and 4 before irradiation.
- **S** drops to zero at edges after 10^{14} p/cm². G. Villani (RAL)

- Less variation in S/N varies over pixel before and after irradiation.
- S at edges still usable after 1015 p/cm2.

Signal from individual particles

Beta source (Ru106) test results. Sensors HEPAPS2.

 O_C^1 200 -400

Distribution of signals

From different types of pixels.

Typical 'Landau distribution

Radiation test. Source results

- Noise seems to increase slightly with dose.
	- Signal decreases with dose.

J. Velthuis (Liv)

HEPAPS 4

1026x384 pixels 3 versions: 1 diode; 2 diodes; 4 diodes 15 µm pitch ENC <~ 15 e- rms (reset-less) 5 MHz line rate Rad-hard: > Mrad Designed in 0.35 um CMOS technology Epi thickness 20 µm Simple shift-register control Odd-even rows output in parallel; Left-right symmetry Single-ended and differential output

International Linear Collider

International Linear Collider: CMOS sensors proposed for Vertex and

Electromagnetic calorimeter.

Radiation hardness: moderate (~100s kRad, 1012 n/cm2)

Large area (stitched) sensor required in both cases.

Total covered area: **~m2** for Vertex, a few **103 m2** for Electromagnetic calorimeter They both call for advanced APS

Outline

¾ **Introduction.**

¾ **CMOS for radiation detection in scientific applications**

Visible light UV

X-ray Charged particles

¾ **Advanced pixels**

¾ **Conclusions**

Design for the Vertex detector at the International Linear Collider

FAPS. Signal distribution

- Test with source
- Correlated Double Sampling readout (subtract $S_{cell 1}$)
- Correct remaining common mode and pedestal
- Calculate random noise
	- Sigma of pedestal and common mode corrected output
- Cluster definition
	- Signal >8 σ seed
	- Signal > 2σ next
- Note hit in cell *i* also present in cell *i+1*.
- S/N_{cell} between 14.7±0.4 and **17.0±0.3**

OPIC (On-Pixel Intelligent CMOS Sensor)
In-pixel ADC
ﷺ

- In-pixel ADC
- In-pixel TDC
- Data sparsification

Test structure. 3 arrays of 64x72 pixels @ 30 µm pitch Fabricated in 0.25 µm CMOS technology

This design is the starting point for Calice: detection of MIPs + time stamps at 150 ns resolution over 2 ms

Experimental results

Conclusions

CMOS Image Sensors can be used to detect photons from IR down to low energy X-rays (direct detection), X-rays (indirect detection) and charged particles (direct detection with 100% efficiency) (… and voltages)

Demonstrators built

For some applications, large sensors already built

Working towards delivery of CMOS Image Sensors-based for scientific instruments for space-science, particle physics and biomedical applications

And last but not least …

Acknowledgements

