
Version 0.01 02/07/2007 16:12

 1

LASER->USBDAQ communication
P. Dauncey

1
, M. Stanitzki

2
, G. Villani

2

1. Introduction
This Document outlines the communication between the Laser TestStand Software written in

Labview and the Software controlling MAPS USB_DAQ written in C++. The communication

is realized using TCP/IP by sending fixed-size messages via an Ethernet connection

2. Network Setup
As already been stated, it was decided to use the TCP/IP protocol for the communication

between the two software packages. The default port to be used is 15000 (well above the 1024

privileged port limitation), but can also be configured to any port beyond 1024. In order to be

free of endian-ness problems and to make the LabView implementation easier, it was decided

to use strings.

3. Configurable Parameters
• Laser Intensity (0-100) 3 bytes

• Laser position x (-1000 - 1000) 5 bytes

• Laser position y x (-1000 - 1000) 5 bytes

• Shutter size x (0-100) 3 bytes

• Shutter size y (0-100) 3 bytes

• Laser Fire Mode 1 byte

o Single pulse 1

o Continuous 2

o Burst 3

o Laser Repetition Rate (0-50) 2 bytes

o Laser Burst pulses (0-100) 3 bytes

o Laser Software Version 10 bytes

4. Message types and sizes
All messages have a unique message ID, that specifies the message type, up to know 9

messages are supported. The total length of a message is 36 bytes. The format of a single

message is shown below.

1
 Imperial College, London

2 Rutherford Appleton Laboratory

Version 0.01 02/07/2007 16:12

 2

1 2 3 4 5 6 7 8 9 1

0

1

1

1

2

1

3

1

4

1

5

1

6

1

7

1

8

1

9

2

0

2

1

2

2

2

3

2

4

2

5

2

6

2

7

2

8

2

9

3

0

3

1

3

2

3

3

3

4

3

5

3

6

M

es

sa

ge

ID

La

se

r

Fi

re

M

od

e

Laser

Intensity

Laser Position

x

Laser Position

y

Shutter

Size x

Shutter

Size y

Laser

Repet

ition

rate

Laser

Burst

pulses

Laser SoftWare Version

The following Message ID’s have been allocated so far

Message ID Message Type

1 SetConfiguration

2 GetConfiguration

3 FireLaser

4 Reserved

5 Reserved

6 Reserved

7 Reserved

8 Reserved

9 Reserved

4.1 SetConfiguration Message

This message has the ID 1, the last ten bytes are empty as the Software Version is a ReadOnly

Variable

4.2 GetConfiguration Message

This message has the ID 2, this is the version only the first byte matters to tell the Software to

read back all values and put them into a Message and send them back

4.3 FireLaser Message

This message has the ID 3, only the first byte matters, all others can be neglected and should

be filled with spaces

