FDR: Logic changes & simulations

FDR SIMULATIONS	2
DIALOGUE	
MASTER CONTROLLER	
LOGIC SIMULATION: NEW ROW ENCODER	
LOGIC SIMULATION: NEW LATCH-HOLD CIRCUITS	
MIXED-MODE SIMULATION: MASTER CONTROLLER	10
REVIEW: CONFIGURATION PROGRAMMING AND VERIFICATION	12

FDR Simulations

Dialogue

This document summarises any relevant simulation or design changes for the FDR; and is primarily formed by outstanding actions from the two IDR sessions.

Row Controller Modifications

During layout a number of modifications were made to the row control logic schematics. These are listed below:

- a) Latch hold circuit updated to include a "safe-mode" circuit.
- b) In the mux6 cell, the spare NOR gate was removed, wiring OVERRIDE directly into the NAND to save space. (this inverts the polarity of the override signal).
- c) The bidirectional SRAM cells were modified to use the 3 phase clocking scheme rather than two as requested at IDR.
- d) Clock buffers added for phi3
- e) In the mux6x7 schematic an error was corrected: The pull-down for DataCodeB had incorrectly been wired after the buffer, not before. (The DataCode signals a left tristate by the mix_6 block unless there is valid data.)
- f) An extra buffer for the DataValid signal was added to drive local signals in the mux_6x7 block to reduce the load on the main DataValid output
- g) New bit ordering in the 20-input or gate (schematic sram_bifir_shift20.5). For efficient layout it was necessary to change the bit order; provided D<19> is present in the output or6 gate the order of the other bits has no effect on functionality.
- h) The shift-in transmission gate (schematic sram_bifir_shift20.5) was removed, and a special input-version of the sram_bidir_shift cell was created to perform the same operation this helped particularly in achieving a compact layout.
- i) A new row encoder to span 168 unique addresses was created as requested in the IDR.
- j) Timecode distribution was adjujsted to suit isolated columns of logic rather than "back-to-back". Original design had one timecode buffer driving two SRAM banks on two "back-to-back" rows. New design has one timecode buffer driving four SRAM banks on four rows.
- k) Control signal buffering modified so that each column re-buffers independently from the next column across (before, just the left hand version of each control signal was used to re-generate the onward buffered signal for a pair of columns, but running these control signals across 2mm to the neighbour column {parallel to bias lines} seemed unnecessary.)
- 1) Additional current-limiting transistors were added to the NOR gate in the monostable circuit (same bias lines as current limited inverter).
- m) Power-on-reset for monostable circuits will be driven from off chip. Pulldown resistor should be added to the circuit board to ensure correct operation on power-up. (the pull-down pad showed odd behaviour in simulation so will not be used)
- n) The preSample pixel schematic was modified such that external resets are separated for sample and preamp reset (originally shared as one Rst_Ext signal). This is necessary to correctly reset the pixel from off-chip, ie before the start of a bunch train.
- o) "Slice" level buffers for reset signals are now powered by digital, not pixel power supply (unnecessary since they drive logic gates in the pixel rather than analog circuits directly).

- p) The bus ordering for SRAM write was changed to facilitate layout; Time-code now occupies the more significant end of the binary word; Data-code located in the LSBs.
- q) Configuration "slow" clocks are driven independently along each row, rather than the one-between-four scheme presented at IDR.

Logic Simulation: New Row Encoder

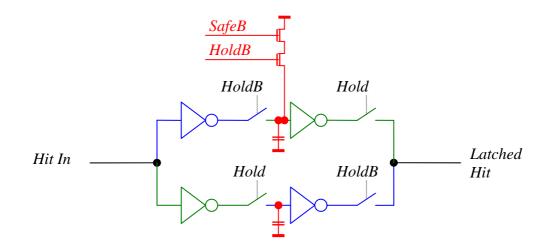
The basic structure of the row encoder is illustrated below. The function of this block is to report at the column base the row address of the cell that is currently being read.

The active cell drives the column bus with its own unique code. The pull-to-ground scheme is compatible with the sense amplifiers used to read the SRAM cells.

Simulations

A row-encoder of 168 cells is simulated.

A new Verilog stimulus is used to individually excite each of the 138 enable (RowReadActive) signals and print to screen the address code that is seen at the base of the column. This text file is imported into excel and processed to check that no repeated codes are seen in the 84-code set.

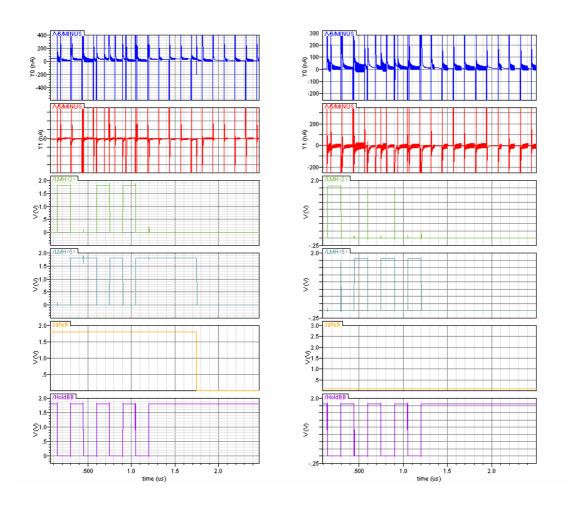

Below: Mixed-mode simulation output log excerpt.

Address	=	011110100
Address	=	011110101
Address	=	011110111
Address Address	=	011110110 011110010
Address	-	011110010
Address	=	011110001
Address	=	011110000
Address	=	011010000
Address Address	=	011010001 011010011
Address	=	011010010
Address	=	011010110
Address	=	011010111
Address Address	=	011010101 011010100
Address	-	011011100
Address	=	011011101
Address	=	011011111
Address Address	=	011011110 011011010
Address	=	011011010
Address	=	011011001
Address	=	011011000
Address	=	011001000
Address Address	=	011001001 011001011
Address	=	011001010
Address	=	011001110
Address	=	011001111
Address	=	011001101
Address Address	=	011001100 011000100
Address	=	011000101
Address	=	011000111
Address	=	011000110
Address Address	=	011000010 011000011
Address	_	011000001
Address	=	011000000
Address	=	001000000
Address	=	001000001
Address Address	=	001000011 001000010
Address	_	001000110
Address	=	001000111
Address	=	001000101
Address Address	=	001000100 001001100
Address	Ē	001001101
Address	=	001001111
Address	=	001001110
Address Address	=	001001010 001001011
Address	-	001001001
Address	=	001001000
Address	=	001011000
Address	=	001011001
Address Address	=	001011011 001011010
Address	=	001011110
Address	=	001011111
Address	=	001011101
Address Address	=	001011100 001010100
Address	=	001010101
Address	=	001010111
Address	=	001010110
Address Address	=	001010010 001010011
Address	_	001010001
Address	=	001010000
Address	=	001110000
Address	=	001110001
Address Address	= =	001110011 001110010
Address	=	001110110
Address	=	001110111
Address	=	001110101
Address Address	=	001110100 001111100
Address	-	001111100
Address	=	001111111
Address	=	001111110
Address	=	001111010
Address Address	_	001111011 001111001
s 3.3		001111000

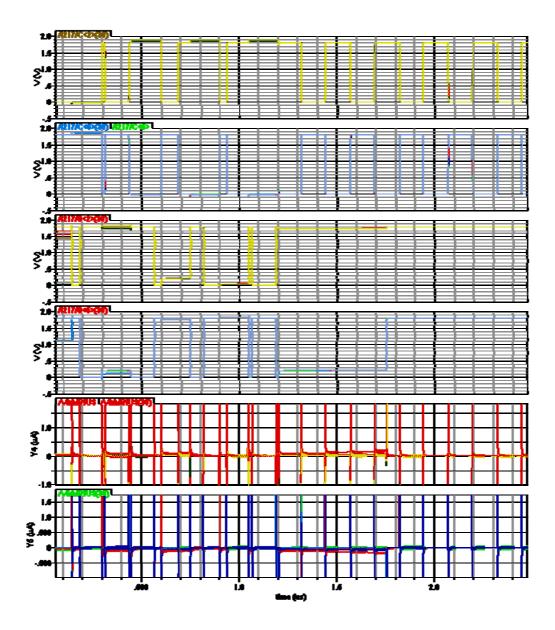
-	Address	=	001111010
	Address	=	001111011
	Address	=	001111001
	Address	=	001111000
	Address	=	001101000
	Address	=	001101001
	Address Address	=	001101011 001101010
	Address	-	001101010
	Address	=	001101111
	Address	=	001101101
	Address	=	001101100
	Address	=	001100100
	Address	=	001100101 001100111
	Address Address	=	001100110
	Address	=	001100010
	Address	=	001100011
	Address	=	001100001
	Address	=	001100000
	Address	=	000100000
	Address	=	000100001 000100011
	Address Address	=	000100010
	Address	=	000100110
	Address	=	000100111
	Address	=	000100101
	Address	=	000100100
	Address	=	000101100
	Address	=	000101101
	Address Address	=	000101111 000101110
	Address	=	000101110
	Address	=	000101011
	Address	=	000101001
	Address	=	000101000
	Address	=	000111000
	Address	=	000111001
	Address	=	000111011
	Address Address	=	000111010 000111110
	Address	-	000111110
	Address	=	000111101
	Address	=	000111100
	Address	=	000110100
	Address	=	000110101
	Address	=	000110111
	Address Address	=	000110110 000110010
	Address	=	000110010
	Address	=	000110001
	Address	=	000110000
	Address	=	000010000
	Address	=	000010001
	Address	=	000010011
	Address Address	=	000010010 000010110
	Address Address	=	000010110
	Address	_	000010101
	Address	=	000010100
	Address	=	000011100
	Address	=	000011101
	Address	=	000011111
	Address Address	=	000011110 000011010
	Address	_	000011010
	Address	=	000011001
	Address	=	000011000
	Address	=	000001000
	Address	=	000001001
	Address Address	=	000001011 000001010
	Address Address	=	000001110
	Address	_	000001110
	Address	=	000001101
	Address	=	000001100
	Address	=	00000100
	Address	=	000000101
	Address	=	000000111 000000110
	Address Address	=	000000110
	Address	_	000000011
	Address	=	000000001
	Address	=	000000000

Logic simulation: New Latch-Hold circuits

The structure below uses a ping-pong architecture to sample the hit signals on both rising and falling edges of the Hold signal. This means the sampling "Hold" signal can run at the ~6Mhz. Additional circuits are shown in RED: This new addition ensures that the circuit can be held in a safe (zero current) state when not in use and does not draw extra current if driven incorrectly.



The "hit" states are stored on the gate capacitance of the second inverters. This capacitance is small, but the state must be held for only 150ns. Additional capacitance is added to the storage nodes: These help reduce charge injection and will also improve data hold times at higher temperatures.

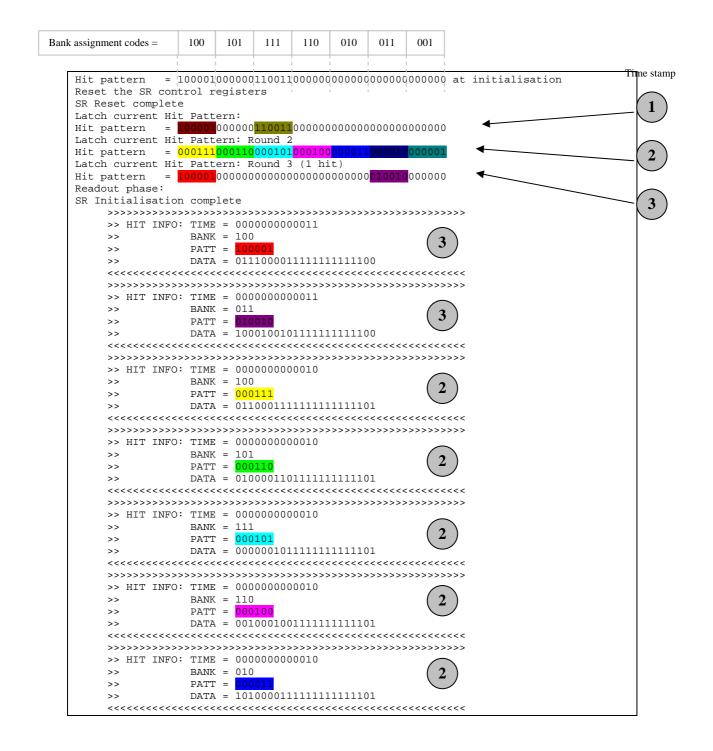

Circuit	States
---------	--------

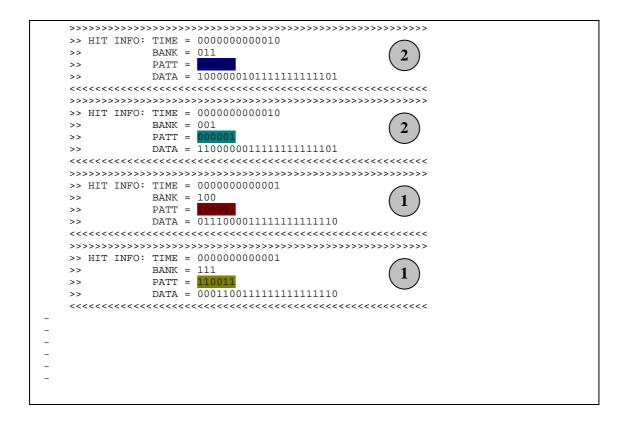
Hold	HoldB	SafeB	Valid / Correct operation?	Static current flow?
0	1	0	✗ Functionality incorrect	0 🗸
0	1	1	✓ Latched	0 🗸
1	0	0	✓ Safe power-down state	0 🗸
1	0	1	✓ Latched	0 🗸

Results Waveforms

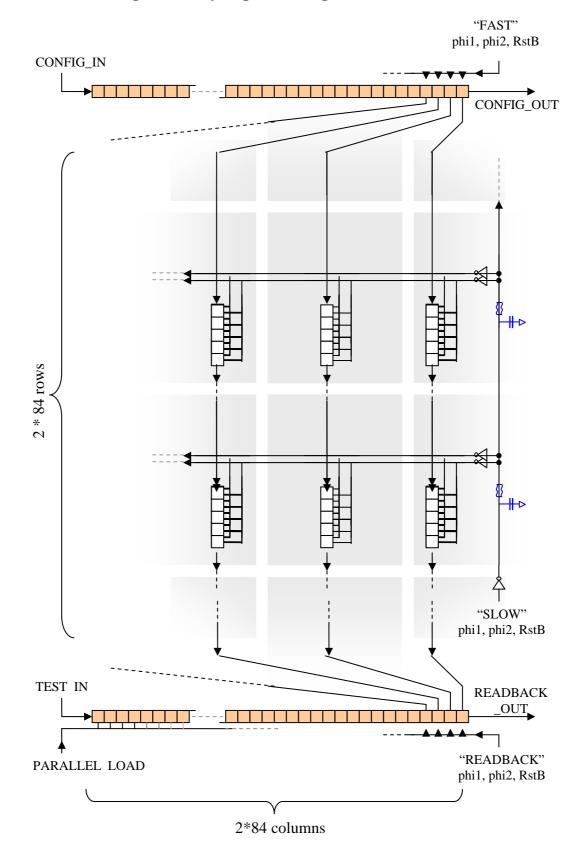
Above: Typical operation is demonstrated in correct and incorrect modes of operation. When the safeB signal is active at the same time as the hold signal the circuit operation is compromised, but the high current flow due to conflict is inhibited (as seen on the right).

Above: Simulation in all process corners is shown to monitor the critical storage nodes. No excessive current flow conditions are seen.


Mixed-Mode Simulation: Master Controller


The final schematic for the master controller (that has been used for LVS) is simulated again with the original Verilog stimulus. The following modifications were necessary due to design changes:

- a) Polarity of OVERRIDE inverted (now active low)
- b) Hold signal now toggles every 150ns rather than fast pulses every 150ns
- c) Third clock signal specified for bidir-sram cell


Simulation log

Colour highlighting is used to show that the correct hits are reported during readout.

^{no change} *Review: Configuration programming and Verification

Simulation results

Mixed mode verification simulation implements a fast SR, a few lines of pixel SR cells and a fast "READBACK" SR. The pattern shifted out should match that shifted in.

Current status: 95% certainty: Log file (below) shows valid data appearing at readback of top fast shift register. Readback from the bottom fast shift register is currently appearing two cycles out of synchronisation with the expected arrival time. The fact that recognisable data patterns are seen read out from the array is positive, and essentially indicates the programming and readback are functioning correctly. The precise explanation for the loss of synchronisation is currently unknown, but probably a simulation/setup issue, not an inherrant design problem, since valid data <u>is</u> seen at the output.

```
Reset all the shift registers...
Reset complete at
            210.
Fast load Trim0 for row 4
0
EXPECTED 000000s
       .....
Readback errors ^^^^^
Slow load through pixels
Fast load Trim1 for row 4
0
Readback errors
Slow load through pixels
Fast load Trim2 for row 4
0
Readback errors
Slow load through pixels
Fast load Trim3 for row 4
0
Readback errors
Slow load through pixels
Fast load MASK for row 4
Readback errors =================================
 Readback errors
Slow load through pixels
Fast load Trim0 for row 3
0
Readback errors
Slow load through pixels
Fast load Trim1 for row 3
0
 Readback errors
Slow load through pixels
Fast load Trim2 for row 3
0
Readback errors
Slow load through pixels
```

```
Fast load Trim3 for row 3
Ω
Readback errors
Slow load through pixels
Fast load MASK for row 3
Readback errors
Slow load through pixels
Fast load Trim0 for row 2
0
Readback errors
Slow load through pixels
Fast load Trim1 for row 2
Readback errors
Slow load through pixels
Fast load Trim2 for row 2
Readback errors
Slow load through pixels
Fast load Trim3 for row 2
Readback errors
Slow load through pixels
Fast load MASK for row 2
0
Readback errors
Slow load through pixels
Fast load Trim0 for row 1
0
Readback errors
Slow load through pixels
Fast load Trim1 for row 1
0
Readback errors
Slow load through pixels
Fast load Trim2 for row 1
0
Readback errors
Slow load through pixels
Fast load Trim3 for row 1
0
Readback errors
Slow load through pixels
Fast load MASK for row 1
0
Readback errors
Slow load through pixels
Pad with zeros
Readback errors
```

Slow load through pixels Configuration complete at time	26124
Begin full readback	20124
Slow load through pixels	
Readback errors ==================================	
EXPECTED 0000000s	
Slow load through pixels	
Readback errors ==================================	
READ BACK 000000000000000000000000000000000000	
Slow load through pixels	000000000000000000000000000000000000000
Readback errors ==================================	= 0
READ BACK 1000000000000000000000000000000000000	
EXPECTED 1000000000000000000000000000000000000	0000000000000000
Readback errors ==================================	= 4
READ BACK 1000000001000000000000000000000000000	000000000000000000000000000000000000000
EXPECTED 000000000000000000000000000000000000	000000000000000000
Slow load through pixels Readback errors ==================================	= 2
READ BACK 000000000000000000000000000000000000	
EXPECTED 1000000000000000000000000000000000000	
Slow load through pixels	
Readback errors ==================================	
EXPECTED 1000000001000000000000000000000000000	
Slow load through pixels	
Readback errors ==================================	
READ BACK 1000000000000000000000000000000000000	
Slow load through pixels	
Readback errors ==================================	= 1
READ BACK 0000000000100000000000000000000000000	
EXPECTED 000000000000000000000000000000000000	00000000000000
Slow load through pixels Readback errors ==================================	= 3
READ BACK 1000000000000000000000000000000000000	
EXPECTED 1000000000000000000000000000000000000	00000000000000000
Slow load through pixels Readback errors ==================================	= 0
READ BACK 000000000000000000000000000000000000	
EXPECTED 000000000000000000000000000000000000	
Slow load through pixels	
Readback errors ==================================	-
EXPECTED 1000000000000000000000000000000000000	
Slow load through pixels	
Readback errors ==================================	
READ BACK 1000000000000000000000000000000000000	
Slow load through pixels	000000000000000000000000000000000000000
Readback errors ==================================	= 1
READ BACK 000000000000000000000000000000000000	
EXPECTED 000000000000000000000000000000000000	00000000000000
Readback errors ==================================	= 3
READ BACK 1000000000000000000000000000000000000	
EXPECTED 1000000000000000000000000000000000000	0000000000000
Slow load through pixels	2
Readback errors ==================================	
EXPECTED 0000000000100000000000000000000000000	
Slow load through pixels	
Readback errors ==================================	
READ BACK 000000000000000000000000000000000000	
Slow load through pixels	
Readback errors ==================================	
READ BACK 000000000000000000000000000000000000	
EXPECTED 1000000000000000000000000000000000000	00000000000000
Readback errors ==================================	= 3
READ BACK 000000000000000000000000000000000000	00000000000000000
EXPECTED 000000000010000000000000000	000000000001
Slow load through pixels Readback errors ==================================	= 4
	4

READ BACK 1000000000100000000000000000000000000
EXPECTED 000000000000000000000000000000000000
Slow load through pixels
Readback errors ===============================0
READ BACK 000000000000000000000000000000000000
EXPECTED 000000000000000000000000000000000000
Slow load through pixels
Readback errors ==============================2
READ BACK 000000000000000000000000000000000000
EXPECTED 1000000000100000000000000000000000000

Page 16 of 16