TeraPixel APS for CALICE

Progress meeting 9th Dec 2005 Jamie Crooks, Microelectronics/RAL

Slide removed

SRAM vs DRAM

DRAM lifetime simulations

Process corners: Typical, worst-power (wp), worst-speed (ws)

	SIMPLE	SIMPLE+2 W	LONG	LONG+2W	CPOD	CPOD+2W
Lifetime (typ)	2.5 ms	5.5 ms	4.5 ms	9.7 ms	5.2 ms	11.2 ms
Lifetime (wp)	0.2 ms	1.8 ms	0.38 ms	3.3 ms	0.4 ms	3.4 ms
Lifetime (ws)	2.4 ms	4.8 ms	4.0 ms	8.1 ms	5.2 ms	10.4 ms

Applying negative 'off' bias to reduce leakage further:

	SIMPLE	SIMPLE+2 W	LONG	LONG+2W	CPOD	CPOD+2W
Lifetime (typ)	2.8	5.6	5.1	10.1	5.9	11.7
Lifetime (wp)	3.4	6.7	6.5	12.8	6.7	13.3
Lifetime (ws)	2.3	4.5	4.0	7.8	5.2	10.24

(Excel sheet:pitch-size-noise-lifetime.xls)

Diode operation

- Pulsed Reset
 - In-pixel self-reset circuit? More complex.
 - Hard/soft reset
 - Large output voltage range (~1.7v)
 - 210e threshold à 9mV drop in diode voltage
- Continuous Reset
 - Logarithmic response
 - May take several us to reset
 - Small output voltage range (200mV)
 - 210e threshold à 9mV drop in diode voltage

Simulations

CALICE_feesability_xh_sim_pixel_diode_single_options_schematic : Dec 9 09:18:29 2005

CALICE_feasability_xh_sim_pixel_diade_single_options_schematic : Dec = 7_11:08:29_2005

. . . .

Comparator Types

- Voltage comparator, fixed threshold
 - Clocked
 - Continuous current
- Voltage comparator, moving threshold
 - Clocked
- Differentiation comparator
 - Continuous current

Voltage comparator: Fixed Threshold

- Continuous (low current, asynchronous) or clocked (current spikes)
- Pixel/localised offset trim: Programmed & stored, or possibly autocalibrated between pulse trains?
- As used in OPIC, but not suitable for CALICE

Voltage comparator: Moving Threshold

- Clocked circuit (current spikes)
- Real-time pixel value is sampled each clock cycle: Vsample + Vth gives local threshold for comparison
- Detects each hit once
- Immune to pixel reset rate
- Clocked design typically 2 clock signals (sometimes more, or nonoverlapping schemes necessary)

Differentiating Comparator

- Continuous operation (asynchronous output)
- Capacitive coupling gives a current proportional to rateof-change of the voltage input
- Detects each hit once (asynchronous duration of charge collection is linear ramp an accurate model?)
- Immune to pixel reset rate
- (Needs circuit development)

Questions...

- Take diode reset model and investigate probability of pile-up
 - Assume wired-reset style pixel
 - Is pile-up rate acceptable?
 - Large signal
- Physics simulations à # electrons figures for a 50um pixel with 4 diodes
 - Max & Min signals on individual diodes for 1 MIP
 - Necessary threshold level for optimum crosstalk
 - 4 diodes preferred from electronics view is this enough for the physics?
- Is my hit modelling reasonable?

Multiple diodes

- N diodes, analog signal addition
 - Forked source-follower circuit ($0.9 * \Sigma$)
- N diodes, Individual select
 - Rotational selection wires 1 diode to pixel comparator and logic
- N parallel diodes, single collecting node
 - StarTracker: 25um pixels, 4 diodes, ~15fF node capacitance
 - Iimas: 32um pixels, 2 diodes,

Summary / Design Choices

- <u>Diodes</u>:
- <u>Pixel size:</u>
- <u>Number of Diodes:</u>
- <u>Reset</u>:
- <u>Comparator</u>:
- <u>Comparator</u>:
- <u>Memory</u>:
 - Variant:

Parallel / Analog-sum / Seq. select 25um / 40um / 50um 1 / 4 / more Switched / Continuous Fixed threshold / Adaptive threshold Continuous / Clocked SRAM / DRAM

SIMPLE / LONG / CPOD

REFERENCE: Diode behaviour approximation

y =	=V	dc+n	$l \cdot (I$	$Ae^{-at} + b$	Be	$e^{-bt} + Ce^{-bt}$	-ct)	
0 dV							-	
	A	A = 0.07		B = 0.05		C = 0.04		
	6	'a'=5000000		ʻb'=800000		'c'=110	'c'=110000	
	MIPs	# electrons	V0	dV step (100ns)	S	Vdc	$r = V_0 - d$	
	1	420	1.939	19.15	mV	0.120	1.92	
	3	1260	1.939	56.78	mV	0.356	1.88	
	5	2100	1.939	92.42	mV	0.579	1.84	
	7	2940	1.939	123.37	mV	0.773	1.81	
	9	3780	1.939	145.97	mν	0.914	1.79	
		4000	4 000	450 57	\ /	0.000	4 7-	