MAPS Geometry Simulation

30th March 2006, MAPS meeting at RAL

Nigel Watson/Yoshinari Mikami University of Birmingham

Introduction

- We tested Si sensitive thickness modification.
 - Default: 0.500 mm, MAPS: 0.015 mm (3.0%)
 - Ecal02.cc (driver of TESLA simulation) was modified.
 - Secal01.cc (super driver of Ecal02.cc) wasn't modified.
 (see slides page 3,4)
 - We implemented Non-sensitive Si volume. (0.485 mm thickness)
 - We studied Energy deposit distribution for single electron to make comparison.

Default Software

- Ecal02.cc (default in Mokka-05-05)
 - Si Sensitive thickness is input value from steering file.
 - Si Physical thickness is equal with Sensitive thickness.
 - Alveolus is defined with 2 PCB + 1 Si Sensitive.
 - PCB thickness is defined in super driver SEcal01.cc as (alveolus_thickness - si_thickness) / 2.
 - Default values: alveolus_thickness= 2.1 mm, si_thickness= 0.5 mm, pcb_thickness is not input value.

MAPS Software Modification

- Ecal02.cc (MAPS)
 - Si Physical thickness is input from steering file.
 - Si Sensitive thickness is fixed as 0.015 mm in code.
 - Si Non-sensitive volume was implemented with (Physical_thickness - 0.015 mm) in code.
 - Secal01.cc (super driver of Ecal02.cc) wasn't modified because still the PCB thickness definition is valid. pcb_thickness = (alveolus_thickness - si_thickness) / 2.

Physical thickness

Geometry Comparison

Geant4 Adaptive GUI (GAG) output distributions looks fine.

Test Simulation Event

- We used following parameters for test simulation.
 - /gun/energy 20 GeV
 - /gun/particle e-
 - /gun/position 0 0 0
 - /gun/direction 0. 1. 0.

Only barrel top sector has hits.

Barrel y position distribution

Energy Deposit Comparison

Number of hits: 325 Mean :1.407 MeV

Number of hits: 232 Mean : 60.8 KeV

Mean ratio for MAPS/Default = (4.32 + - 0.38)%

Interval is 0.485 mm smaller than default.

Consistency Check (2)

 We tested implement of Tungsten instead of Silicon-Non-Sensitive volume for cross check.

Energy Dependence for Number of Hits

- Single electron event
- Si Sensitive thickness is 0.015 mm
- Si Non-sensitive thickness is 0.485 mm
- Cell size is still 1 cm times 1 cm

Mean of Hits Energy with Energy Dependence

- Single electron event
- Si Sensitive thickness is 0.015 mm
- Si Non-sensitive thickness is 0.485 mm
- Cell size is still 1cm times 1cm

Number of Hits with Si Sensitive Thickness dependence

- 20 GeV single electron event
- Si Physical thickness is 0.500 mm
- Cell size is still 1cm times 1cm

Mean of Hits with Si Sensitive Thickness Dependence

- 20 GeV single electron event
- Si Physical thickness is 0.500 mm
- Cell size is still 1cm times 1cm

Summary and Next Steps

- Summary
 - We studied Si thickness modification. (Mokka-05-05 Geant4-8 and LCIO-v01-06 are used.)
 - The modification looks working well.
- Next steps
 - More statistics
 - Cell size changes
 - Digitization for position
 - Energy/angle/position resolutions
 - Systematic studies and cross checks