Status of MAPS Geometry Simulation

17th MAY 2006

MAPS Meeting at Rutherford Appleton Laboratory

Yoshinari Mikami University of Birmingham

Outline

- Cell size dependence
 - Mokka-06-00 and LCIO-v01-07 are used. (Two cellIDs are available.)
 - $25\mu m \ge 25\mu m \sim 100\mu m \ge 100\mu m$ cell size variation.
- Incoming Single Electron Energy dependence
 - Default geometry, MAPS thickness and MAPS geometry
- Single muon test
 - Comparison between default and MAPS thickness
 - Comparison with other energy deposit distribution.

Cell size dependence

All plots are: 100 GeV Single e- 5,000 events with sensitive thickness is 15µm.

Mean Energy of Cell Hits with Incoming Single e- Energy dependence

Mean Energy of Cell Hits with Incoming Single e- Energy dependence

MAPS Energy deposit dose NOT depend on incoming electron beam energy !

Mean Energy of Cell Hits with

Incoming Single e- Energy dependence & Cell size variation

Mean Energy of Cell Hits

	20 GeV e-	100 GeV e-	fraction (100GeV/20GeV)
Default (500µm thickness,	1360 +/-19	2590 +/-37	(190+/-3.8)%
1cm X 1cm cell)	KeV	KeV	
MAPS thickness (15µm thickness	61.7 +/- 0.9	121 +/- 1.7	(196+/-2.8)%
1cm X 1cm cell)	KeV	KeV	
MAPS (15μm thickness,	8.30 +/-0.26	8.62+/-0.27	(103.9+/-4.6)%
100μm X 100μm cell)	KeV	KeV	
MAPS (15µm thickness,	7.10+/-0.10	7.19+/-0.10	(101.3+/-2.0)%
50µm X 50µm cell)	KeV	KeV	
MAPS (15µm thickness,	5.71 +/- 0.18	5.73+/-0.18	(100.4+/-4.5)%
25µm X 25µm cell)	KeV	KeV	

#Cell Hits / Event with Incoming Single e- Energy Dependence

Energy Deposit / Event with

Incoming Single e- Energy Dependence

Single Muon Energy Deposit (Under study)

- #Cell hits / event = 78.7+/- 1.1 (stat)

- Mean E of Cell hits = 100 + - 1.4 KeV

- E deposit / event = 7.87 + 0.11 MeV

hit energy Entries 389161 Mean 3.723e-06 tit 10⁵ RMS 8.698e-06 20 GeV mu-104 15µm thickness 10³ 1cm X 1cm cell 10² (5,000 events) 10 10-6 10-5 10-4 GeV 10⁻³

#Cell hits / event = 77.8 +/- 1.1 (stat) Mean E of Cell hits = 3.72 ± 0.05 KeV E deposit / event = 289.8 + - 4.1 KeV MAPS/Default ratio for mean energy of Cell hits = (3.72 ± 0.07) % MAPS/Default ratio for energy deposit per event = (3.68 ± 0.07) %

40 layers means #Cell hits / layer ~ 2 ----> Mean E / layer ~ 7.4 KeV in 15 μ m.

Single Electron Energy Deposit

- #Cell_hits / event = 345.4+/- 4.9 (stat)

- #Cell_hits / event = 240.3+/- 3.4 (stat)

- Mean E of Cell_hits = 1.36 ± 0.02 MeV - Mean E of Cell hits = 61.7 ± 0.9 KeV

- E deposit / event = 471 +/- 6.6 MeV - E deposit / event = 14.8 +/- 0.2 MeV MAPS/Default ratio for mean energy of Cell_hits = (4.31 +/- 0.09) % MAPS/Default ratio for energy deposit per event = (3.16 +/- 0.06) % (->Consistent with 3% thickness reduction)

Energy deposit distribution with Cell size dependence

(All plots are 5,000 events)

Status and Future Prospects

- Status
 - MAPS Geometry (15µm thickness x 50µm x 50µm cell size) clearly show single hit energy deposit.
 - 5µm x 5µm cell size is under study. (It need modification for bits assignments. <-- We can use provision bit.)
- Next steps
 - MC study for #MIP hits / cell.
 - Muon test with small cell size.
 - Cross-talk/Multi-particle studies with physics events.
 - Disk/CPU consumption estimate with physics events.
- Future Prospect
 - Position/Energy resolutions.