Study of Monolithic Active Pixel Sensors

International Linear Collider (ILC) Workshop (ILC-ECFA and GDE Joint Meeting) Valencia, 6-10 November 2006

> Y. Mikami, N. Watson, J. Wilson University of Birmingham,

> > P. Dauncey, A. Magnan Imperial College London,

J. Crooks, K. Stefanov, R. Turchetta, M. Tyndel, G.Villani Rutherford Appleton Laboratory

Outline

- Introduction
- MAPS (Monolithic Active Pixel Sensors)
 - Concepts
 - Design
- Geometry modification
- Single e-/ μ simulation
 - Si sensitive thickness dependence
 - Cell size dependence
 - Incoming energy dependence
- Summary of status
- Future prospects

Introduction

- High granularity
 - Small cells
 - →Digital Calorimetry
- Cost saving
 - Si thickness reductions
 - Direct reduction of Si volume
 - Reduction of outer sub-detector volume

MAPS concepts

- Binary readout
- Detecting individual particles after electromagnetic cascade shower
- Result in measuring single particle in a cell
- •

MAPS design

- > Current design
- 1cm X 1cm cell
- 500um Si sensitive thickness

- > MAPS design
- 50um X 50um cell
- 15um Si sensitive thickness

Geometry modification

Default

MAPS

Si Sensitive

Si Non-sensitive

800um 500um 800um

800um

15um

485um

800um

- Mokka 05-05
- Ecal02.cc (ECAL driver) is modified.
- Geant4 Adaptive GUI (GAG) output is fine.
- Energy deposit agreed with the expect.
 - (i.e.15/500 = 3%)
- Layer position shift agreed with the expect.

Single e- simulation (1.a) (Si sensitive thickness dependence)

Good linearity

Single e- simulation (1.b) (Si sensitive thickness dependence)

Only a few % dependence

Single e-/ μ - simulation

15um Si sensitive thickness 50um X 50um cell size

Single e- simulation (2.a) (Cell size dependence)

Single e- simulation (2.b) (Cell size dependence)

One MIP per cell and Charge sharing by neighbour cells

Single e- simulation (2.c) (Cell size dependence)

Single e- simulation (3) (Incoming energy dependence)

Cell hit number is proportional to incoming energy.

Readout by 48 contiguous cells (One option)

100GeV single e-

#cell hit in 48 contiguous cells

Total energy also increased 30% compared with single cell.

Summary of status

- MAPS geometry is implemented
- Each cell has only one MIP
- Charge sharing by neighbour two cells
- 50um X 50um cell seems to be optimized.

Future Prospects

- Clustering algorithm development
 - It can be developed only with topology. (i.e. Each cell hit's energy is identical.)
 - Saving CPU consumption in this Tela pixel algorithm is important.
- Resolution studies after clustering study