

CALICE Meeting RAL 17.05.2007 M. Stanitzki

Bit's and Pieces

- Working with Vanilla
- Landau fitting of Energy distribution (Summary)
- Hit clustering

The Vanilla Program

- MAPS sensor provided by Renato
 - Device to test our setup
- DAQ is based on the OPTODAQ
 - Virtex II-Pro
 - Gigabit Ethernet
- C-GUI for data taking
- Tests with⁵⁵Fe source
- Encountered lot of difficulties
- The setup kept Konstantin, Giulio, Andy and myself quite busy

Fixed pattern

⁵⁵Fe Results

+ Clustering

Fixed pattern removed

4

⁵⁵Fe Results (II)

Noise Only

Fixed pattern removed

+ Clustering

Marcel Stanitzki

6

Vanilla Summary

- Useful exercise, we've learnt a lot
- Test the RAL Setup
- Testing Analysis Ideas
- Fighting with the DAQ
 - Buffering is essential
 - All kind of problems even with Gigabit Ethernet
- Finding ⁵⁵Fe is not as simple as expected
 - Cross-checked everything with a LCFI CCD
- We can calibrate the Vanilla now ..

Fitting Hits

- Triggered by Paul
 - could you extract number of double hits out of the distribution ?
- Basic Idea
 - Look for two peaks
- Does not work, all smeared together
- So try fitting model ...

Multiple Landaus

- Idea 2 particles
 - $N_{electrons1} + N_{electrons2}$
 - Sum is again Landau distributed
 - Assumption Sum of two Landaus is Landau with 2xMPV +2 x sigma
 - Tested in Root implementation (good enough)
 - No rigid mathematical proof

Test plots

Landau with •MPV=1200 • σ =200

Test Cases

- Hit Pattern 1 (2 cells right next to each other)
- Hit Pattern 2 (2 cells corner on corner)
- Hit Pattern 4 (2 cells with one empty cell in between)
- All electrons from all hits

Results

- •Terms are a1*Landau(MPV,σ) + a2*Landau(2*MPV,2*σ)+ 1-a2-a1)*Landau(n*MPV,n*σ)
 •Mostly using even Terms, 1,2,4,8,16
 •MDV approx 1200 electrons per Hit (From Ciulio)
- •MPV approx 1300 electrons per Hit (From Giulio)

Results

- For Hit pattern 1 (2 Cells)
 - 70 % Single Hit
 - 20 % 2 Hits
 - 10 % 4 Hits
- For Hit Pattern 2 (2 Cells)
 - 80 % 2 Hits
 - 20 % 6 Hits

- 1 (2 For Hit Pattern 4
 - 80 % 2 Hits
 - 12 % 4 Hits
 - 8 % 8 Hits
 - For all electrons (123*8 ~ 1000 This is the maximum)
 - 16 % 1/8 Hit
 - 12 % ¼ Hit
 - 10 % ½ Hit
 - 55 % 1 Hit
 - 7 % 2 Hits

Outlook

- This needs some work and testing
- But is a way to answer some questions

Hit Clustering

- IDEA for Pandora
- Cluster MAPS hits into 5x5 mm Hits with energy $=n_{_{Hits}}$
- Same Idea as Anne-Marie's Clustering, but
- I need SimCalorimeter Hits, so I write out SimCalorimeter Hits
- Beta Version is running an being tested

Test with 20 GeV e⁻

PandoraPFA 1.01

- Is running at RAL
- Does better than previous devel version
- Works with 50x50
 microns MAPS
- Resolution:
 - 35 %/sqrt(E)
- Analog
 - 30 %/sqrt(E)

