

CALICE Meeting RAL 18.06.2007 M. Stanitzki

Bits and Pieces

- Working with Vanilla (cont'd)
- StepSize in Geant
- Linux-LabView interface
- First Look at π^0

Vanilla and Laser

- Work by Giulio, Konstantin and Marcel
- Run Laser with a lot of filters
- synchronous firing
- Take special "pedestal run" to do pedestal subtraction

Vanilla Charge spread

Noise only

Stepsize in Geant

Linux<->LabView

- Needed for DAQ <-> Laser Communication
- Use of Sockets for Linux
- Use of TCP library for LabView (Makes things a lot easier...)

Linux Socket Driver

Wrapped in a C++ class

LaserSocket * mySocket=new LaserSocket;

```
mySocket->OpenSocket();
```

```
mySocket->SetDestinationHost("192.168.0.102");
```

```
mySocket->Connect(portnumber) ==0)
```

```
mySocket->SendMessage("11");
```

```
mySocket->CloseSocket();
```

Works reliably and can be easily used without deep knowledge about sockets

LabView Side

Look at π^0

- Strong interest at LCWS for π^0 reconstruction
 - τ physics
 - em shower reconstruction
 - find π^0 candidates
 - apply kinematic fit
 - use corrected energies in event reconstruction

How many ?

- Generate Z-> uds (~ 100 GeV per Jet)
- Using Pythia 6.4
- Use MAPS only...
 - Digitize has issues with Pandora (unclear why)
- Loop over Event record

Some plots

Jet energy composition

Number of π^0

Photon spectra

Energy

Angle between photons

Number of photons

Nphotons

 $N_{non-\pi photons}^{0}$

20 GeV π^{0}

All layers

First 5 layers

First shot with Pandora

Science & Technology Facilities Council Rutherford Appleton Laboratory

Applying a scale factor

raw 5.58 ±0.39

scaled 5.32±0.26

33 % better resolution ... would be nice if it works with real events ...

Science & Technology Facilities Council Rutherford Appleton Laboratory

Same with 20 GeV π^0

No improvement here, probably scaling inadequate

What needs to be done ?

- Using a proper fitter
- Have a decent calibration (vital)
- better clustering
- more statistics
- try it with Z's ...

