Tera-Pixel APS for CALICE

Progress meeting, 31st August 2007 Jamie Crooks, Microelectronics/RAL

Test progress

	(predicted)									
ID	Task Name	% Work Complete	Duration							
1										
2	Power-on PCB with no chip	100%	4 days							
3	Bonding	100%	5 days							
4	Power-on PCB with bonded chip	90%	2 days	â ~1 days turn on 13 th Aug						
5	Verify Shfit Registers	0%	3 days	â ~1 day						
6	Fast shift reg top	100%	1 day							
7	Slow shift reg (pix)	95%	1 day							
8	Fast shift reg bott	100%	1 day							
9	Verify Monostables	75%	1 day	Æ ∼8 days						
10	Verify pixel comparator	60%	2 days	~1 day						
11	Operate & verify test pixels	35%	3 days	$\sim 1 \text{ day}$ \rightarrow today 31 st Aug						
12	Set up system for PPD	20%	5 days							
13	Viable system ready for Marcel & Giulio	0%	0 days	ß 4 th September in my plan						
14	Verify Configuration Programming	90%	4 days	â ~1 dav						
15	Blind test (prove logic with pixels masked)	5%	5 days	~1 day						
16	Single column tests	0%	5 days							
17	Full frame tests: Single shot	0%	3 days							
18	Full frame test: N shot	0%	4 days							
19	Full frame tests: Continuous run	0%	2 days							
20	Set up systems for IC & Birmingham	0%	5 days							
21	Viable systems ready for IC & Birmingham	0%	0 days							
22										
23	Owen available	100%	9.53 days?							
24	Michael (student) available	0%	25.53 days?							
25	TWEPP Conference (1st results pub?)	0%	5.27 days?							
26	Vertex 2007 (alt. results pub?)	0%	5.27 days?	-						

Pixel results: Very preliminary!

Monostable + bias

Monostable + current limit bias

System overview

- Need to either
 - run chip I/O at ~1.8v
 - Correct the design so the I/O can be run at 3.3v and the bias chain still operated correctly
- Simply driving 3.3v signals into the chip would forward-bias the protection diodes in the pads!

Option 1: Level Shifters

- Re-spin sensor card adding level shifting circuits,
 - Active
 - Passive (resistor divider)
- Card footprint can remain the same if LA connectors are removed

Option 2: Direct connection

- Remove LVDS transceivers on both boards
- Bond/solder across the footprint
- FPGA can work with single-ended outputs/inputs at 1.8v

Option 3: Adjust power supplies

- Run the chip at 2v
 - Possible degradation to lifetime/reliability
- Run the LVDS and inverters at 2.5v
 - This is below the minimum supply (3v) stated in datasheet
- Parts do work at >2.1v but probably not at full quoted data-rate (that we don't need) 3.3v Noise margins are compromised but circuits should function ٠ DAC as intended Requires minor modifications to the power . regulators/distribution on the sensor card. 2.5v 2.5v 2.0v I/O 2.0v CORE TRX TRX (2m Cable) . SQVJ **FPGA** ASIC1 LVDS

Option 4: Combined cards

 Re-spin FPGA daughter card to include the sensor footprint

Option 5a: Die Modification

Option 5b: Die Modification

- Use laser or focussed ion beam (FIB) techniques to make corrections to the existing chip design
 - Remove connection to VDDO
 - Drive OUTBIAS with voltage DAC to give crude control of current flow – should be sufficient for this bias as it only limits current flow in logic cells.

Cut ~10 micron access holes through M6, M5, M4, M3

(Cut ~5 micron dia. hole through M2)

Option 6: Design Modification

- Make changes to the design and re-fabricate
 - Single mask (M2) change

Summary of Options

		Sensor card	DAQ card	Cable	Timesacle	Cost
1	Level shifters	Re-design	No change	2m ok	~4 weeks?	
2	Direct connect	Modify existing	Modify existing	Minimum lengths only	~1 week?	
3	Adjust power supplies	Modify existing	No change	2m ok	~instant	
4	New FPGA+Sensor card	Abandon	Re-design	None	~4 weeks?	
5	Die modifications	No change	No change		~2 weeks?	(a) Quote requested (b) Giulio?
6	Design modify + re-fab	No change	No change		~8 weeks?	~\$25K