

A MAPS-based readout for Tera-Pixel electromagnetic calorimeter at the ILC

Y. Mikami, O. Miller, V. Rajovic, N.K. Watson, J.A. WilsonUniversity of Birmingham

J.A. Ballin, P.D. Dauncey, A.-M. Magnan, M. Noy

Imperial College London

J.P. Crooks, M. Stanitzki, K.D. Stefanov, R. Turchetta, M. Tyndel, <u>E.G. Villani</u> Rutherford Appleton Laboratory

> TWEPP-07 Topical Workshop on Electronics for Particle Physics

Prague 2007

1

Outline

- ILC CALICE
- CALICE MAPS Concept, R&D activity
- Conclusions

- Exact ICL beam timing parameters not yet defined
	- Assume close to previous ("TESLA") design
	- Beams collide rapidly within a quick burst ("train")
	- Long dead time between trains
- Assume worst case timing as follows
	- Beam collision rate within train = 6.7 MHz, i.e. 150ns between collisions
	- Number of collisions within train = 14000, i.e. train is 2ms long
	- Train rate = 10Hz, i.e. 100ms between trains; 2% duty cycle
- Rate of signals
	- ILC is not like LHC; rate of physics processes is small
	- Most collisions give nothing, but when reaction does happen, many adjacent channels will be hit
	- Expected rate not very well known; needs detailed simulation modeling
	- Assume average ~10−6 hits/pixel/crossing, which is ~0.005 hits/pixel/train

CALICE description

- CALICE has a baseline ECAL design
	- Sampling calorimeter, alternating thick conversionlayers (tungsten) and thin measurement layers (silicon)
	- Around 2m radius, 4m long, 30 layers tungsten and allemance $\tilde{\mathbf{c}}$ silicon, ≈2000m2 Si
- Mechanical structure
	- Half of tungsten sheets embedded in carbon fibrestructure
	- Other half of tungsten sandwiched between two PCBs each holding one layer of silicon detector wafers
	- Whole sandwich inserted into slots in carbon fibrestructure

4

CALICE description

Baseline ECAL design

- Silicon sensor detectors in baseline are diode pads, pad size between 1.0×1.0 and 0.5×0.5 cm2, glued to large PCB
- Pad readout is analogue signal; digitized by Very Front End (VFE) ASIC mounted o the other PCB side
- Si wafers ≈ 10x10cm2
- Si layers on PCB ≈ 1.5m long 30cm wide
- Average dissipated power 1-5 µW/mm2
- Total number of pads around 20-80M

CALICE MAPS design

MAPS ECAL design

 Baseline design with diode pads largely unaffected by use of MAPS

Potential benefits include:

- Reduced PCB section for MAPS **Decrease** in Moliere radius **Increased resolution**
- Increased surface for thermal dissipation
- Less sensitivity to SEU because of spread out logi c
- Cost saving (CMOS standard process vs. high resistivity Si for producing 2*10^7 cm2 and/or overall more compact detector system)
- Simplified assembly (single sides PCB, no need for grounding substrate)

Baseline design with VFE (left) and MAPS without VFE (right)

CALICE MAPS design

- $\bullet\,$ Divide wafer into $\underline{\text{small pixels}}$ so as to have small probability of more than one particle going through each pixel
- Binary readout, 1bit ADC
- Improved jet resolution or reduced number of layers (thus cost) for the same resolution
- Around 100 particles/mm2 pixel size of maximum 100 X 100u2
- Current design with 50 x 50um2 pixel
- Total number of pixel for ECAL around 8 x 1011 pixels **Terapixel** system
- Record collision number each time hit exceeding threshold (timestamp stored in memory on sensor)
- Information read out in between trains

CALICE MAPS Prague September 2007

G. Villani

CALICE MAPS design

- •First prototype designed in CIS 0.18 μ m process submitted early 2007
- Different pixel architectures included in the first prototype
- • Target is to reduce noise to the level of physics background (S/N>15)
- Faulty pixels masking and variable threshold to reduce false hits and crosstalk
- Optimization of pixel layout and topology essential
- \bullet Minimization of power consumption essential

CALICE MAPS Prague September 2007

CALICE MAPS design

Optimization MAPS process

- Using Pwell implant to shield N-well housing readout electronic
- ●Improvement in charge collection
- ●Optimization of the diode location and size is necessary

CALICE MAPS design - pixel simulation -

Pre-Shape:

Pixel reset before start of bunch train Stand by in readout Hit event generates one time hit-flag to the logic CR-RC shaper decays according to input amplitude then is ready to accept next event

Pre-Sample:

 Pixel reset before start of bunch train and automatically after local hit during bunch train Stand by in readout CA output sampled afterReset and then realtime difference input to comp

Expected similar noise characteristics from both designs

CALICE MAPS design - readout

CALICE MAPS Prague September 2007

CALICE MAPS design - pixel layout -

Pre-sample layout

Pre-shape layout

- ●Each digital block serves 42 pixels from one row
- ●Row split into 7 groups of 6 pixels

●Following a hit, for each row the logic stores in SRAM time stamp(13 bits), pattern number (3 bits), pattern (6 bits)

- \bullet 22 bits/hit + 9 bits row encoding = 31 bits/hit
- ●Register for masking out noisy pixels

CALICE MAPS design - pixel architecture -

- 1*1 cm² in total
- 2 capacitor arrangements
- 2 architectures
- 6 million transistors, 28224 pixels
- Estimated power:
- ≈10 µW/pixel continuous
- ≈40µW/mm²including 1% duty factor
- Dead area ≈200 µm every 2 mm
- Each sensor could be flip-chip bonded to a PCB

CALICE MAPS design – pixel architecture

CALICE MAPS - RAL test setup -

Laser MIP

• Three wavelength laser:

λ=1064, 532,355 nm,

focusing < 2 µm,

pulse 4ns, 50 Hz repetition,

- Labview Control software
- MIP Calibration: Si reference detector coupled to low noise CA + differentiator (no shaper) A250CF peltier cooled
- Amplifier Gain measured ~ 7mV/MIP
- Amount of stray light and EMP reduced within the laser test setup

G. Villani

CALICE MAPS Prague September 2007

CALICE MAPS Prague September 2007

Conclusions

- \bullet MAPS-based ECAL can potentially offer a number of advantages in termsof performances and overall cost
- \bullet Novel INMAPS process for MAPS might have significant advantages in terms of charge collection efficiency
- \bullet Pixel design and readout electronics optimized for charge collection and S/N
- First design aims at demonstrating feasibility of the approach and to •achieve significantly high S/N
- Power dissipation still high and needs to be addressed \bullet
- •Test setup ready
- •Chip testing underway now

CALICE MAPS backup slides

CALICE MAPS backup slides

- $\overline{1}$ Stave structure
- $\overline{1}$ Lack of hybrids/ASIC allow less complex/thinner PCB
- lThinner sensors (down to 100 µm)

