

A CMOS Monolithic Active Pixel Sensor with Analog Signal Processing and 100% Fill Factor

J. Crooks STFC Rutherford Appleton Laboratory

Imperial College London

Introduction

SiW ECAL for ILC

- 30 layers silicon & tungsten
- Prove Monolithic Active Pixel Sensor (MAPS) as a viable solution for the silicon!

Pixel Specification

- MIP signal (~450e-)
- Noise rate 10⁻⁶
- Binary readout from 50micron pixels

Machine operation

- 150ns max bunch crossing rate
- 199ms between bunch trains for readout

•

Test Chip Overview

- 8.2 million transistors
- 28224 pixels; 50 microns; 4 variants
- Sensitive area 79.4mm2
 - of which 11.1% "dead" (logic)
- Four columns of logic + SRAM
 - Logic columns serve 42 pixels
 - Record hit locations & timestamps
 - Local SRAM
 - Data readout
 - Slow (<5Mhz)
 - Current sense amplifiers
 - Column multiplex
 - 30 bit parallel data output

Pixel Architectures

preShape

- Gain 94uV/e
- Noise 23e-
- Power 8.9uW
- 150ns "hit" pulse wired to row logic
- Shaped pulses return to baseline

preSample

- Gain 440uV/e
- Noise 22e-
- Power 9.7uW
- 150ns "hit" pulse wired to row logic
- Per-pixel selfreset logic

time (us)

Pixel Layouts

preShape Pixel

- 4 diodes
- 160 transistors
- 27 unit capacitors
- Configuration SRAM
 - Mask
 - Comparator trim (4 bits)
- 2 variants (1),2): subtle changes to capacitors

preSample Pixel

- 4 diodes
- 189 transistors
- 34 unit capacitors
- 1 resistor (4Mohm)
- Configuration SRAM
 - Mask
 - Comparator trim (4 bits)
- 2 variants (3,4): subtle changes to capacitors

INMAPS Process

- Standard 0.18 micron CMOS
- 6 metal layers used

Science & Technology Facilities Council

- Analog & Digital VDD @ 1.8v
- 12 micron epitaxial layer
- Additional module: Deep P-Well
 - Developed by foundry for this project
 - Added beneath all active circuits in the pixel
 - Should reflect charge, preventing unwanted loss in charge collection efficiency
 - Test chip processing variants

٠

 Sample parts were manufactured with/without deep p-well for comparison

Prototype Testing

FPGA Based DAQ

- Xilinx
- USB2
- Master/Slave modes
- Laser/PMT interfaces

Cable Link

- 3x80 Flat ribbon
- LVDS 50Mhz (max)

Sensor card

- Rear mounted sensor
- Voltage & current DACs
- Logic Analyzer Ports
- · LVDS I/O
- Power regulators

Preliminary Tests: Proof of Life

Pixel Configuration

Write & read back random config data with no errors

Digital Logic

- Operate all four columns in "override" mode which fills SRAMs with false hits
- Row, timestamp, mux and hit pattern data look correct for "override" mode (on Logic analyzer)

PreSample test pixels -

- · Monostables generate pulses
- Comparator switches; TRIM settings adjust threshold
- Pixel signal output shows saturation due to ambient light
- Voltage step on Vrst shows output pulse, which can be reset

Preliminary Tests: Laser Scan

Focussed Laser

- 4ns pulse at 1064nm wavelength
- Focussed to 4x4 micron on rear of sensor
- Exact signal unknown •
- Step by 5um in x and y •
- Record & plot signal step size for each position

12um epi + DPW

exact position unknown!

20 40 60 80 100

-60 -40 -20 0

unknown)

x (μm)

x (µm)

Summary & Future

- Preliminary results
 - Proof of life from novel new MAPS test sensor
 - Charge collection observed
 - Proof of principle; deep P-well
- · Immediate Future
 - PCBs in manufacture
 - Quantitive evaluation of sensor performance
 - Fe55 source
 - \cdot Laser scan
 - · Cosmics (stack of 4 sensors)
 - \cdot Beam test

Second Sensor

- Larger format
 - Reticule size ~ 25x25mm
 - Minimised dead area
 - Minimised number of I/O pads, suitable for bump bonding
 - Will be tiled to create 15x15cm square array for beam test
- Pixel design
 - Selected from one of the variants based on test results
 - Optimisation?
 - Pixel pitch à 100 microns?
- · System on chip
 - Integrated timecode & sequencing
 - Serial data output
 - Minimised number of control signals required
- Design submission: mid 2008

Is Finish

Row Control Logic & Memory

Hit signals from 42 pixels are sampled by external clock

- (150ns/bunch crossing rate)
- To optimise use of local memory
 - Rows are divided into 7 parts
 - Each is interrogated in turn
 - The sub-pattern of hits is stored if any are present
- 19 SRAM registers

Science & Technology Facilities Council

- Timestamp

•

•

•

- Mux address
- Hit distribution
- Memory manager
 - Ensures each register is written once
 - Can raise a global overflow flag
 - Activates only the valid registers during readout

