Simple charge diffusion model

Paul Dauncey, Anne-Marie Magnan

Epitaxial layer charge movement

- Modelled in detail by Giulio
 - All effects included
 - Detailed geometry
- Hard to get intuitive feel for results
 - Difficult to run many variations due to speed restrictions
- Wanted to see how much due to diffusion
 - Assumption that this is dominant movement mechanism
- Make simple model for diffusion
 - Numerically solve and compare to Giulio's more detailed simulation
- NOT a replacement for Giulio's work
 - Need to calibrate to his results to set scale
 - But allows quick interpolation and test of other geometries, charge deposits, etc.

Diffusion model

- Basic equations
 - Charge conservation: $\delta \rho / \delta t + \nabla . \mathbf{j} = 0$ (so no recombination)
 - Diffusive movement: $\mathbf{j} = -k\nabla \rho$ where k is the diffusion constant
- These can be combined to give $\delta \rho / \delta(kt) = \nabla^2 \rho$
 - Time scaled by k, so no absolute timescale
- Work with 5×5 pixel grid
 - 20×20 points per pixel, each $2.5 \times 2.5 \mu m^2$
- Divide epitaxial depth with same cell size
 - $15\mu m/2.5\mu m = 6$ cells
- Use very simple numerics
 - Three-point $O(\Delta x^2)$ for ∇^2
 - Forward (Newton) $O(k\Delta t)$ time step
- Boundary conditions a bit tricky
 - Perfect boundary at bottom of epitaxial layer
 - Fraction of charge removed for some cells at top of epitaxial layer
 - Exponential falloff through 5×5 pixel grid edges

Time dependence

- Want final results after charge has been collected/diffused out
 - Note, Giulio reports 90% charge levels so some differences
 - Worst-case for time as least charge absorbed by pixels

• Total = 1.0, Bulk \rightarrow 0.0, 3×3 pixels ~ 0.95, Central pixel ~ 0.45, Outside 5×5 < 0.01

Overall final distribution

- Central pixel ~ 0.45
- Side pixel ~ 0.1
- Corner pixel ~ 0.03

Paul Dauncey

Paul Dauncey

Add n-well with no deep p-well

Just model central n-wells

N-wells without deep p-well but only in central pixel

Paul Dauncey

Conclusions

- Main effect seems to be diffusion
- Modelling with simple simulation is reasonable but quantitatively there is disagreement
 - Ideal or realistic deep p-well agrees to within ~50%
 - No deep p-well differs by order of magnitude in tails
- Can help quickly to quantify differences
 - Missing n-wells outside central pixel
 - Charge lost outside 3×3 pixels, etc.
- Not a substitute for full simulation