Imperial laser system and analysis

Paul Dauncey, Matt Noy

Laser/stage set up

- Matt revived a set of x-y stages and laser/microscope system
 - Unused for several years
 - Interfaced to USB_DAQ board so easy to drive with DAQ
- Laser specs
 - Wavelength 1064nm
 - Power 50mW
- Timings
 - Laser fires $\sim 2.5 \mu s$ after start of bunch train (adjustable but fixed here)
 - Laser pulse length is 25ns
 - Number of bunch crossings set to $10 \sim 4.0 \mu s$
 - Laser hit seen in bunch crossing 8 (counting from 0), i.e. $\sim 3.2 \mu s$
 - Note, single pixel cannot fill memory with only 10 bunch crossings
- Only got working last Tuesday
 - All results here are really commissioning-level

Alignment

- Move to ~10 semi-random positions on sensor
 - Tried for corners and centre but not all gave a response
- Do position scan (like Anne-Marie's results)
 - Coarser; 12 steps of 10µm in each direction
 - 120 μ m should always fully include at least one pixel
- Find average stage position weighted by number of hits per position for each pixel
 - Try to identify "good", fully-contained pixels to use
- Fit points for each axis direction and scale separately
 - Axes scales: 0.9962±0.0014, 0.9977±0.0006; ~0.3% difference to sensor
 - Axes angles: 6.0±0.6mrad, 9.0±1.4mrad; ~3mrad non-orthogonality
 - Both cases: error ~0.001 means $10\mu m$ error over full sensor movement
- Position of overall coordinate system $\pm 3.5 \mu m$
 - Relative motion over short distances much better; $\sim 0.1 \mu m$

Threshold scans

- Move to centre of chosen pixel
 - Within errors of alignment
 - Anne-Marie's plots show not so sensitive at 5μ m level
- Mask all pixels but the chosen one
 - See plots on next page
- Scan threshold, $-500TU \rightarrow 500TU$ in steps of 5TU
- Take 1000 bunch trains at each threshold value
- For next few plots, all chosen pixels were shapers
 - Looked at 3×3 pixels in Quad0 (x<84) and 5×5 pixels in Quad1 (x ≥ 84)
 - Statistics limited by time to do fits...

Paul Dauncey

Different masks

20 May 2008

Paul Dauncey

Effect of common mode

Apparent drop of efficiency at low threshold; gives rings shown by Anne-Marie

Paul Dauncey

70301

106

14.08

7.03e+04

Pedestal values

- Measured from peak around zero
 - Renato stated (29/02/08) the pedestal shape in the threshold scan plot should be ideally Gaussian with width = noise
- Ideally would do threshold scan without laser for every pixel used
 - Not yet done so fit lower side of Gaussian

- Pedestal ~16TU in this pixel
- RMS ~5TU, so 5TU steps too coarse for accurate fit
- From Jamie's measurements (also 29/02/08) we guesstimated 1TU ~ 30eV ~ 8e⁻ so this noise would be ~40e⁻, close to expected
- Dip at ~30TU related to ring shown by Anne-Marie

Signal extraction

• Take derivative of threshold plot (neighbour bin subtraction) to get laser signal

Signal values

- Fit to simple Gaussian
 - Note points are correlated (from derivative calculation) so errors uncertain
 - Not yet at that level of sophistication; fit to erf would be better but less robust

- Signal peak ~91TU in this pixel
 - With Jamie's scale, this would be 700e⁻
- RMS ~8TU; again 5TU steps are too coarse
- RMS is direct measure of spread
 - Contribution from laser pulse variation and sensor noise
- Gives an upper limit on sensor noise if laser assumed negligible
 - Noise < 8TU ~ 60e -

Fit values entered into spreadsheet

M	licrosoft Exc	el - sensor	r											×
1	<u>File</u> <u>E</u> dit	View	Insert F <u>o</u> rm	nat <u>T</u> ools	<u>D</u> ata <u>W</u> ii	ndow <u>H</u> elp	•	Type a question for help 🚽 🚽 🖶 🗙						×
In		1	11 0 1	Arial		- 10	BI	U 📰 🗐		💷 % ,	+.0 .00		• 🕭 • A	-
	A1	-	fx Run			100		_			100 210 1			
	Α	В	С	D	E	F	G	Н	I	J	K	L	M	
1	Run	Pixel X	Pixel Y	Ped Norm	Ped Mean	Ped Rms	Sig Norm	Sig Mean	Sig Rms	Sig Area	Gain	Gain/Sig R	Gain/Ped Rr	n
2	470472		9 9	2257	-12.4	6.25								
3		-												
4	470474	- 5	9 28	1554	-8.3	4.13	262	67.7	7.41	4866	76.0	10.3	18.4	
5	470475	6	0 28	1470	-11.3	4.61	269	66.5	7.20	4855	71.8	3 10.8	16.9	
0	470470	0	1 20	2/34	-2.2	5.07	250	/0.0	7.02	4//5	10.2	10.3	15.4	
8	470477	6	9 29 0 20	1000	16.2	1.21	260	01.0	7 78	4075	74.8	0 0 6	15.5	
9	470470	6	1 29	1914	-52.7	4.02	257	31.0	7.62	4075	75.9	10.0	16.2	
10	470480	5	9 30	2694	12.3	10.05	166	89.9	11 38	4735	77.6	6.8	7.7	
11	470481	6	0 30	2438	9.4	4.67	252	91.2	7.67	4845	81.8	3 10.7	17.5	-
12	470482	6	1 30	1683	47.1	6.21	203	139.2	9.57	4870	92.1	9.6	14.8	
13														
14	470506	3	7 102	2640	11.5	5.95	201	116.5	9.76	4917	105.0	10.8	17.6	
15	470507	3	8 102	2773	-17.6	5.30	191	92.6	10.28	4922	110.2	2 10.7	20.8	
16	470508	3	9 102	2202	2.8	5.39	202	95.2	9.63	4876	92.4	9.6	17.1	
17	470509	4	0 102	2041	-11.7	5.72	210	78.4	8.92	4695	90.1	10.1	15.8	
18	470510	4	1 102	2931	6.4	6.22	226	93.8	8.53	4832	87.4	10.2	14.1	
19	470511	3	7 103	2987	48.5	8.82	158	160.1	11.57	4582	111.6	5 9.6	12.7	
20	470512	j	8 103	3350	6.1	8.03	1/6	115.3	10.96	4835	109.2	2 10.0	13.6	
21	470513	3	9 103	2330	-23.0	5.09	220	03.2	0./1	4003	107.0	12.3	10.0	
22	470514	4	1 103	3288	-10.0 52.4	6.16	215	154.0	8.64	4512	100.1	11.0	16.5	
24	470515	3	7 104	2313	12.4	6.78	163	123.0	11 91	4866	110.7	93	16.3	
25	470517	3	8 104	2027	-10.9	4.61	234	75.8	8.37	4909	86.7	10.4	18.8	
26	470518	3	9 104	2420	-35.9	4.87	232	49.7	8.41	4891	85.6	5 10.2	17.6	\sim \sim \sim
27	470519	4	0 104	2258	-2.4	5.69	180	97.3	10.68	4819	99.7	9.3	17.5	
28	470520	4	1 104	2394	-31.4	5.42	255	49.8	7.68	4909	81.2	2 10.6	15.0	
29	470521	3	7 105	2503	-37.9	5.15	240	52.9	8.16	4909	90.8	11.1	17.6	
30	470522	3	8 105	2208	-44.1	7.78	168	70.3	11.41	4805	114.4	L 10.0	14.7	
31	470523	3	9 105	2739	-15.8	4.60	221	85.7	8.81	4880	101.5	11.5	22.1	
32	470524	4	0 105	2474	51.0	7.32	131	173.5	14.12	4637	122.5	8.7	16.7	
33	4/0525	4	1 105	2589	-4.5	4.61	272	87.6	7.27	4957	92.1	12.7	20.0	
34	470526	3	/ 106	2098	-16.6	5.73	202	91.5	9.67	4896	108.1	11.2	18.9	
35	470527	Ji 21	0 106	1600	-3.7	5.09	1/1	109.5	11.23	4614	113.2	10.1	16 /	
37	470520	3	0 106	2116	-21.4	0.13	235	62.7	8 20	4009	0.001	5.4	20.2	
38	470520	4	1 106	2345	24.2	5.60	213	101 7	8 99	4003	77 5	8.6	13.8	
39	410000		. 100	2.040	24.2	5.00	213	191.1	0.00	-000	11.5	0.0	10.0	
14 4	► H\ Sh	apers / Pl	ots / Hist1	/ Hist2 / Hi	st3 / Hist4	/ Hist5 / Hi	st6 / Samo	lers / Sh	•		1	-		
Dead	v.		((The Article of the	A moet	(and a samp							
Redu	y													

Pedestal distribution

Correlation of signal vs pedestal means

Gain distribution

Correlation of gain vs signal RMS

Gain/Signal RMS distribution

Correlation of signal vs pedestal RMSs

Samplers; signal shape

• Try same trick with derivative of threshold plot to get laser signal

- Double peak structure; common to most sampler pixels
- Not understood by me...

Conclusions

- Variation of pedestal as observed previously
- Much smaller variation of gain
- Small difference in gain of Quad0 and Quad1 shapers but S/N is roughly the same
- Masking makes a big difference to observed pedestal
- Noise is < 8TU and may be ~6TU
- Samplers not understood...
- Many things to do:
 - More statistics
 - Set overall calibration scale
 - Gain independent of trim?
 - Noise with finer threshold scan, without laser
 - Cause of masking and noise rate coupling?