Status Report

Owen Miller Marcel Stanitzki

Column Corruption Study

- This presentation contains a summary of results from column corruption studies using sensor 18.
- Each study focused on a single column and consisted of two sets of threshold scans.
- The first set of threshold scans were taken when all the pixels in the column were active at the same time.
- The second set of threshold scans were recorded with only one pixel in the column active in each run.
- The results of comparing these two sets of threshold scans are shown in the following slides.

The standard deviation of pixel threshold scans typically increases if all the pixels are active at the same time:

The number of threshold units the standard deviation shifts by seems to follow a fairly consistent pattern:

20

10

0

Owen Miller

read: Standard Deviation of threshold scan when all pixels in the column are activated minus Standard Deviation when only one pixel is active at a time.

4/06/2008

DiffSD

168

2.51

5.273

Entries

Mean

RMS

14

Column 40

8

4

6

10

12

Difference in Standard Deviation

14

16

The range of means for pixel threshold scans is reduced when all the pixels are active at the same time:

The number of threshold units the pixel threshold scan mean shifts by when all the pixels in a column are on are:

The threshold scans of all the pixels in a column are shown below:

Column 14

One Pixel on at a time

Owen Miller

All Pixels On

For Column 13:

All Pixels On

And Column 40:

All Pixels On

One Pixel on at a time

Looking at individual pixel threshold scans we see this:

Owen Miller

- All pixels active
- One pixel active at a time

And in column 13:

- All pixels active
- One pixel active at a time

And in column 40:

Owen Miller

- All pixels active
- One pixel active at a time

Laser Tests

- We are able to identify laser hits on the sensor.
- If a pixel is registering a laser hit during a threshold scan, then the resulting threshold scan histogram will have a significantly increased standard deviation (relative to pixels not registering laser hits).

The Difference in pixel threshold scans when the pixel is hit by the laser:

Laser on

Owen Miller

4/06/2008

Laser off

Using the Standard Deviation as a guide, pixels hit by the laser are now clearly identifiable:

This of Course Gives very similar results to using the Pixel RMS:

Marcel Stanitzk<mark>i</mark>

A Few More Individual Pixel Threshold scans with the Laser:

Laser Pilot Run

Marcel Stanitzki

Signal Cutoff Map

signal cutoff map

Marcel Stanitzki

A pixel threshold scan (top), and its integral (bottom)

