

MAPS for a "Tera-Pixel" ECAL at the International Linear Collider

J.P. Crooks

Y. Mikami, O. Miller, V. Rajovic, N.K. Watson, J.A. Wilson University of Birmingham J.A. Ballin, P.D. Dauncey, A.-M. Magnan, M. Noy Imperial College London J.P. Crooks, B. Levin, M.Lynch, M. Stanitzki, K.D. Stefanov, R. Turchetta, M. Tyndel, E.G. Villani STFC-Rutherford Appleton Laboratory

Science & Technology Facilities Council Particle Physics Department

Introduction

HCAL ECAL × 5000 (4200 Module ECAL 1700 (1500) 5 Hz 2625 bunches 1ms 199 ms

Buffer data Triggerless data readout

SiW ECAL for ILC

- · 30 layers silicon & tungsten
- Prove Monolithic Active Pixel Sensor (MAPS) as a viable solution for the silicon!

Machine operation

- 189ns min bunch spacing
- · 199ms between bunch trains for readout

Sensor Specification

- Sensitive to MIP signal
- Binary readout from 50micron pixels
- Store timestamp & location of "hits"
- Noise rate 10⁻⁶
- Design to hold data for 8k bunch crossings before readout

INMAPS Process

- Standard 0.18 micron CMOS
 - 6 metal layers
 - Analog & Digital VDD @ 1.8v
 - 12 micron epitaxial layer
 - Additional module: Deep P-Well
 - Developed by foundry for this project
 - Added beneath all active circuits in the pixel
 - Should reflect charge, preventing unwanted loss in charge collection efficiency
 - Device simulations show conservation of charge
 - Test chip processing variants
 - Sample parts were manufactured with/without deep p-well for comparison

TCAD model of 3x3 pixels

- Charge injected in 21 reference points
- Response at each diode in 3x3 pixels recorded
 - Charge collected
 - Collection time (to 90%)
- Profile mirrored to create full
 150x150um terrain

Profile F; through cell

Device Simulations

Profile B; through cell

Pixel Architectures

preShape

- Gain 94uV/e
- Noise 23e-
- Power 8.9uW
- 150ns "hit" pulse wired to row logic
- Shaped pulses return to baseline

Sig@1200e

Sig@1600e

preSample

- Gain 440uV/e
- Noise 22e-
- Power 9.7uW
- 150ns "hit" pulse wired to row logic
- Per-pixel selfreset logic

Pixel Layouts

preShape Pixel

- 4 diodes
- 160 transistors
- 27 unit capacitors
- Configuration SRAM
 - Mask
 - Comparator trim (4 bits)
- 2 variants: subtle changes to capacitors

preSample Pixel

- · 4 diodes
- 189 transistors
- 34 unit capacitors
- 1 resistor (4Mohm)
- Configuration SRAM
 - Mask
 - Comparator trim (4 bits)
- 2 variants: subtle changes to capacitors

Test Chip Architecture

- 8.2 million transistors
- 28224 pixels; 50 microns; 4 variants ~
- Sensitive area 79.4mm2
 - of which 11.1% "dead" (logic)
 - Four columns of logic + SRAM
 - Logic columns serve 42 pixels
 - Record hit locations & timestamps
 - Local SRAM
 - Data readout
 - Slow (<5Mhz)
 - Current sense amplifiers
 - Column multiplex
 - 30 bit parallel data output

Sensor Testing: Overview

Test pixels

- preSample pixel variant
- Analog output nodes
- Fe55 stimulus
- IR laser stimulus

Single pixel in array

- Per pixel masks
- Fe55 stimulus
- Laser Stimulus

Full pixel array

- preShape (quad0/1)
- Pedestals & trim adjustment
- Gain uniformity
- Crosstalk
- Beam test

Test pixels: Laser Stimulus

- 1064nm pulsed laser
- 2x2um square area of illumination at focal point
 - · Simulates point-charge deposit in pixel
- Illuminate back of sensor
- Silicon is ~transparent at this λ
- Adjust focus to hit the EPI layer
 - Account for refractive index!
- Scan XY position to 1um accuracy
- Test pixels & laser run asynchronously
- Oscilloscope triggered by laser sync pulse shows analog response from test pixel
- Measure (histogram)
 - · Amplitude
 - Time delay
 - = (System Delay) + (charge collection)

Test pixels: Laser Stimulus

- First look (Nov '07)
 - without / with DPW
 - 4x4um spot, 5um steps
 - Poor focussing!
 - Recent scans

•

- Optimised Focus
- · 2x2um spot, 2um steps

Y posistion (microns) [X position fixed ~pixel diodes]

- Automated laser profile of full test pixel area begins...
 - With/without DPW
 - Different depths epi

Test pixels: Laser Stimulus

Evaluating single pixel performance

- Binary readout from pixels in the array
 - Can mask individual pixels
- Evaluated with a threshold scan...
 - Record #hits for a given threshold setting
 - 1 threshold unit ~0.4mV
 - · Low thresholds \rightarrow noise hits
 - Max #hits defined by memory limit (=19 per row)
 - Comparator is edge-triggered
 - Very small or negative thresholds don't trigger comparator
 - Signal should generate hits at higher thresholds than the noise
 - No hits expected for very high thresholds

Single active pixel with/without laser firing

Single Pixel in Array: Laser/Alignment

\cdot Use laser for alignment

- \cdot Back of sensor has no features for orientation
- Mounting is not necessarily square to <1um
- \cdot Laser position scans in X & Y
- · Threshold scan technique
- · Estimate signal magnitude from drop-off
 - · By eye
 - By function fit?

٠

Single Pixel in Array: Laser Stimulus

- Amplitude results
 - With/without deep pwell
 - · Compare
 - Simulations "GDS"
 - Measurements "Real"

Profile B; through cell

Single Pixel in Array: ⁵⁵Fe Source

- ⁵⁵Fe gives 5.9keV photon
 - Deposits all energy in ~1 μ m³ volume in silicon; 1640e⁻
 - Sometimes will deposit maximum energy in a single diode and no charge will diffuse
 → absolute calibration!
- Binary readout from pixel array
 - Need to differentiate distribution to get signal peak in threshold units (TU)
 - Differential approximation

Array of PreShape Pixels: Pedestals

Array of PreShape Pixels: Gains

- Use laser to inject fixed-intensity signal into many pixels
- Relative position should be equivalent for each pixel scanned
- Adjust/trim for known pixel pedestals

- Gain uniform to 12%
- Quad1 ~40% more gain than Quad0
- Quad1 ~20% better S/N than Quad0

Array of PreShape Pixels: Beam Test

Took advantage of beam-test opportunity

- very soon after receiving sensors
- before long shut-down at DESY
- Proof of 4-sensor system
- Did see particles in multiple layers 😊
- Sensor pedestals were not trimmed at this time
 - Little usable data 읭

Immediate Future

Characterisation of v1.0 is still ongoing

- Automated laser tests
- Cosmics stack
- Version 1.1 due back late September
 - One pixel variant selected (preShape quad1)
 - Upgrade trim adjustment from 4bits to 6bits
 - · Compatible format: size, pins, pcb, daq etc.
 - Minor bugs fixed
 - Additional test pixels & devices

Version 1.1 Full Characterisation

- Automated laser tests
 - test pixels
 - array
- Source tests
- Cosmic tests
- Beam test early 2009
 - With trims this time!

•

Long Term future

- Version 2 is part of a proposal submitted last week!
 - Larger sensor 25x25mm
 - Tiled to create a 125x125mm layer of pixels
 - Minimum dead space between sensors
 - Wire bonded through PCB holes
 - Stacked in 16 layers to ultimately prove the Digital ECAL concept

	•••••			
•••••••••••••••••••	1 a -			
	11			

Conclusions

- First Sensor
 - Successful operation of highly complex pixels
 - See $\alpha \& \beta$ radioactive sources
 - See laser injection of charge
 - See beam particles (albeit with low efficiency at the time)
 - Proved viability of the Deep P-Well for applying MAPS to particle physics
 - Selected a preferred pixel design to take forward
 - Some minor bugs
 - Low level data corruption
 - Some coupling between power domains generating false hits
 - Revised Sensor
 - Uniform array of improved pixels
 - Full characterisation ready to go!
 - Exciting future
 - Prove "Digital ECAL" concept using CMOS sensors