

⁵⁵Fe Studies RAL 08.12.2008 J.P. Crooks, M. Stanitzki, M. Tyndel

Trim studies

- Run 84 pixel
 - in quad0 and quad1
- Scan trims from 0 to 15
 - measure trim linearity with signal
 - study after glow
- Repeated Study with different setting
 - Changed from Common mode of 3072 (old study)
 - Common mode 2048 new study

individual pixels quad 0

Rutherford Appleton Laboratory

individual pixels quad 0

trim linearity in quad 0

Cross-check

Trim

Afterglow

A more detailed look

A more detailed look

A more detailed look

First look at TPAC 1.1

- Irradiated the testpixels with Gary's ⁵⁵Fe source
 - Readout done using scope
- Several problems
 - much harder to trigger on ⁵⁵Fe pulse
 - We can only store 16384 samples
 - talked to LeCroy and got a lot of feedback
 - and some ideas how to fix or work around
- anyway, we took some data
- Cross checked with DC coupling
 - no hidden factors of two found

The spectra – Shaper A

The spectra – shaper B

Shaper A DC coupled

Some individual pulses

Real pulses

Fake pulses

Includes Reset Pulses Automatically filtered during analysis

Noise

Noise of 3.64 mV measured

TPAC 1.1 Simulation

- Triggered by Mike
 - Do we understand the ⁵⁵Fe spectra ?
- Taking the Laser Scan done by Jamie
 - Apply pedestal correction
 - Interpolate it
 - Transform in a probability map
 - do the simulation

The Data

Pedestal subtraction

Interpolation

- Interpolate from 5 steps to 1 micron steps
- Linear interpolation so far
- Certainly not optimal
- normalized to have a collection efficiency from 0 to 1

First attempt

- Inject delta peak of 1620 electrons
- Randomly in 80x80 mu window with pixel in center
- Gives an idea, but no so great
- mV conversion is "educated guess"

Model spectra

Go again

Comments

- Shapes are modeled reasonably
- The pedestal subtraction is not a straight forward thing to do
 - Could have an impact on the description at small values
 - could be the wrong way of doing things
- Went on with some cross-checks

Start with a toy model

- 50 x50 mu pixel
- 4 diodes
- modelled as 2d-Gaussian
- 5 x5 charge collection map

Testing interpolation

Interpolation does not introduce any craziness !

Advanced modelling

- did not include so far
- Absorption effect of ⁵⁵Fe
 - from Mike Absorption length is 14 microns
- collection is dependent on depth
 - need to model that as well
- So for each photon
 - randomize depth using exponential
 - include charge collection efficiency at this point

Plots

Results

Science & Technology Facilities Council Rutherford Appleton Laboratory

30

Summary

- Our simple assumptions of ⁵⁵Fe are wrong
- To get decent simulation
 - Depth effects
 - Collection effects in 3D !
 - a lot of CPU
- Have a rough model in place
 - fully flexible
- Crazy thought
 - can we fit it to the data ?

