# Charge diffusion model results

Paul Dauncey

1

### Diffusion model (for details, see 29/2/08)

- Basic equations
  - Charge conservation:  $\delta \rho / \delta t + \nabla . \mathbf{j} = 0$  (so no recombination)
  - Diffusive movement:  $\mathbf{j} = -k\nabla \rho$  where k is the diffusion constant
- These can be combined to give  $\delta \rho / \delta(kt) = \nabla^2 \rho$ 
  - Time scaled by k, so no absolute timescale
- Work with  $5 \times 5$  pixel grid and looks at charge in central  $3 \times 3$  pixels
  - 50 50 points per pixel, each  $1 \times 1 \mu m^2$ ; factor 2.5 finer than previous results
- Divide epitaxial depth with same cell size
  - 12 points, each  $12\mu m/12 = 1\mu m$ ; ditto
- Use very simple numerics
  - Three-point O( $\Delta x^2$ ) approximation for  $\nabla^2$
  - Forward (Newton) O(k $\Delta t$ ) approximation for  $\delta/\delta(kt)$
- Boundary conditions a bit tricky
  - Perfect boundary at bottom of epitaxial layer (z=0)
  - Fraction of charge removed for some cells at top of epitaxial layer (z=12)
  - Exponential falloff through  $5 \times 5$  pixel grid edges

### Point geometry



- Giulio's 21 points in triangle  $\times$  9 pixels = 189 values
- 136 independent points after averaging
- Reflections/translations copy these to 900 points
  - Most (but not edges/corners) duplicated 8 times

## GDS (Giulio) vs diffusion model

![](_page_3_Figure_1.jpeg)

- Two parameters to tune using centre point #0
  - Absorption of diodes: use GDS "perfect deep p-well"; gives 44%
  - Absorption of n-well with deep p-well: use full GDS; gives 31%
- All other points then determined from diffusion

### Fractional charge spectra for models

![](_page_4_Figure_1.jpeg)

- Fraction of charge seen in centre pixel for uniform deposits over 3×3 pixel array
  - MIP-like spread in z direction
- Red shows distribution in centre pixel
  - Corresponds to distribution of maximum signal if reading all pixels
- Suggestion of peak at charge fraction ~0.3?

### Scale up from $5\mu m$ to $1\mu m$ steps

![](_page_5_Figure_1.jpeg)

- 21  $\rightarrow$  351 points in triangle  $\times$  9 pixels = 3159 values
- $136 \rightarrow 2916$  independent points after averaging
- Copy these to  $150 \times 150 = 22500$  points
  - Much larger fraction of points duplicated 8 times

### Fractional charge spectrum for 5µm steps

![](_page_6_Figure_1.jpeg)

### Fractional charge spectrum for 1µm steps

![](_page_7_Figure_1.jpeg)

- Peak at fraction of ~0.32 of total charge; approx 3% of hits
- Results from wide flat region between pixels

![](_page_8_Figure_1.jpeg)

![](_page_9_Figure_1.jpeg)

![](_page_10_Figure_1.jpeg)

![](_page_11_Figure_1.jpeg)

![](_page_12_Figure_1.jpeg)

![](_page_13_Figure_1.jpeg)

![](_page_14_Figure_1.jpeg)

![](_page_15_Figure_1.jpeg)

![](_page_16_Figure_1.jpeg)

![](_page_17_Figure_1.jpeg)

![](_page_18_Figure_1.jpeg)

![](_page_19_Figure_1.jpeg)

![](_page_20_Figure_1.jpeg)

#### Fractional spectrum $5\mu m$ with MIP-like z

![](_page_21_Figure_1.jpeg)

#### Fractional spectrum 1µm with MIP-like z

![](_page_22_Figure_1.jpeg)

### Fractional spectrum $5\mu m$ with $^{55}$ Fe-like z

![](_page_23_Figure_1.jpeg)

• Still shows peak but details differ

#### • Need to do 351 points in $xy \times 12$ points in z

• Around ~ 2 weeks saturated running

## Comparison with single diode

![](_page_24_Figure_1.jpeg)

- Simple model;  $6 \times 6 \mu m^2$  diode in centre of  $50 \times 50 \mu m^2$  pixel
- Most of the rest of the pixel is n-well with deep p-well
  - Absorption parameters have same values

#### Fractional spectrum $5\mu m$ for four diodes

![](_page_25_Figure_1.jpeg)

### Fractional spectrum $5\mu m$ for single diode

![](_page_26_Figure_1.jpeg)

• Average fraction seen in centre pixel ~half of four diode average

### Conclusions

- The peak at ~0.3 of the charge seems to be reproducible
  - Details vary so exact position is not reliably known
  - Shows up in both MIP-like and <sup>55</sup>Fe-like deposits
- There is a significant dependence on the z depth of the charge deposited
  - Charge from the bottom of the epitaxial layer is not all lost by transverse diffusion to other pixels
  - Implies a thicker epitaxial layer would increase signal size
- A single diode may give ~0.5 of the signal of four diodes
  - Very preliminary; geometry parameters are not fixed
  - Would need full GDS-based simulation to cross-check a few points