TPAC1.2 trimming

Trimming Sensor #29

- Same method as for TPAC1.0
 - Fix trims to some values
 - Unmask 42 pixels per readout region
 - 4 regions = 168 pixels total in each run
 - Do threshold scan to determine mean and width
 - Do 168 runs to cover complete sensor
- Adjust trim to narrow mean distribution
 - Can only go up from trim=0
 - Need to pick target value near top of range of means
 - Trim each pixel to get mean as close as possible to target
 - Need to iterate; not yet complete for this sensor

Set all trims=0 initially: mean

No obvious position dependence for mean

1 Jun 2009

Paul Dauncey

4

Trims=0: width

No obvious position dependence for width

Paul Dauncey

Trim=0: width vs mean

Trim=8: Shift of means

Paul Dauncey

Trim=8: Comparison of widths

Need to pick target mean value

Shift of mean vs trim value

1 Jun 2009

Paul Dauncey

Current status of trim: means

Current status: mean vs trim=0 mean

Current status: trim values

Current status: widths

Current status: width vs trim

Conclusions

- TPAC1.2 seems to be working very like TPAC1.0
 - Very similar means and widths
 - In terms of both central values and spread
 - This is very good news
- Trim is working and sensor can be trimmed
 - Non-linear trim response makes mean very sensitive
 - Can this be reduced?
 - Can whole trim range be used?
- Width distribution degraded after trimming
 - Not seen in TPAC1.0 (I think)
 - Due to change of gain?
 - 15% variation comparable with normal spread