More on TPAC1.2 trimming

Trimmed sensors #29, #45, #46, #48

- Same method as before
 - Fix trims to some values
 - Unmask 42 pixels per readout region
 - 4 regions = 168 pixels total in each run
 - Do threshold scan to determine mean and width
 - Do 168 runs to cover complete sensor
- Adjust trim to narrow mean distribution
 - Picked target for pixel mean = 100TU for all sensors
 - Adjust trims using binary division of remaining range for each pixel
 - Needs six set of runs to fix all six bits
- Following completed trim, run with ~all pixels unmasked
 - Threshold scan similar to "real" running

Sensor #29 trim values

Sensor #29 shift relative to trim=0

TrimV0 All Shift vs trim

Similar for all four sensors

Sensor #29 effect of trimming on mean

Sensor #29 mean (cont)

Similar for all four sensors

Sensor #29 effect of trimming on RMS

Trim0 All Sigmas

Similar for all four sensors

Sensor #29 dependence of RMS on trim

TrimV0 All Sigma vs trim

Similar for all four sensors

Position dependence of RMS

25 Jun 2009

Sum of all region 0 hits from trim runs

Rate from runs with all pixels unmasked

Sum of all hits again

Exclude pixels with RMS > 15TU

Unmasked runs for 8000BX/BT; mean

Unmasked runs for 8000BX/BT; scatter

Four regions not exactly the same

Run 479128, Region 1, Number of words vs Sensor 29, Threshold

Paul Dauncey

Sensor 29, Threshold

Sensor29Region1LinScatte

Not exactly reproducible

25 Jun 2009

The four sensors vary significantly

Conclusions

- For trimming, the sensors look very uniform
 - Same mean, noise distributions
 - Same response to trim
 - Very few dead pixels
- Will hit memory limit if running for 8000BX/BT
 - Only for a few of the most noisy pixels
 - Can reduce rate significantly by masking most noisy ~2% of pixels
- When running with all pixels unmasked, see instabilities
 - Not very reproducible for a given sensor
 - Different sensor to sensor