

CAlorimeter for the Linear Collider Experiments **Overview and Prospects**

Anne-Marie Magnan

Imperial College London

On behalf of the Calice-UK collaboration

Imperial College London

People and Institutions

- ~ 200 Physicists and Engineers
- From 36 institutes...
- ... 10 countries...
- ... all around the world : Europe, Asia, America.
- UK counts for ~35 physicists and engineers in Birmingham, Cambridge, Imperial College, Manchester, RAL, RHUL, and UCL.
- With a common DAQ and software: effective comparison of several designs to find the best one for the future International Linear Collider Physics Program.
- Timescale for TDR: less than 4 years now!

Physics Requirements as the milestone

 In order to be able to achieve the LC physics program, we need a really good reconstruction of jets → Performant particle flow algorithm (PFA) together with a high granularity calorimeter are

CALICE concretely - Electromagnetic part

CALICE concretely - hadronic part with analog readout

Analog HCAL prototype : scintillator tiles

Recently completed by tail catcher and 2 layers of

muons scintillators

→38 scintillator tile layers (90 x 90 cm2) = 4.5λ

→ Absorber : steel

→ High granularity : 100 tiles with 3*3 cm² surface, surrounded by 6*6 cm² and 12*12 cm² tiles

- → 8000 channels, read out by SiPM in 16-bits ADCs.
- → followed by a tail catcher + muon tracker (TCMT) (~10 λ) to measure the shower leakage and tag muons : 96 cm of iron absorber instrumented with 16 layers of 5mm*5cm scintillator strips.
- → Common ECAL-AHCAL-TCMT DAQ

Currently 24 sensitive layers completed for AHCAL, Expect completion by March 2007.

CALICE concretely – hadronic part with digital readout

• Digitial HCAL:

Assumption

Confusion term is the dominant contribution to jet energy resolution

Particles in jets	Fraction of energy	Measured with	Resolution [σ²]	
Charged	65 %	Tracker	Negligible	
Photons	25 %	ECAL with 15%/√E	$0.07^2 E_{\rm jet}$	→ 18%/√E
Neutral Hadrons	10 %	ECAL + HCAL with 50%/√E	$0.16^2 E_{\rm jet}$	
Confusion	Require	ed for 30%/√E	$\leq 0.24^2 \mathrm{E_{jet}}$	

Minimize confusion term

Maximize segmentation of calorimeter = digital readout

→ Two main technical concepts :

Gas-ResistivePlateChambers and GasElectronMultipliers

1*1 cm² pad size, ~380,000 channels

Adaptable in AHCAL steel structure for comparison.

→ First prototype with RPC planned for November 2007.

Real content of this talk

- I. Summary of DESY and CERN testbeam 2006 (still ongoing at CERN) and plans for next year
- II. Overview and last year progress and plans for both ECAL concepts
 - 1. Data acquisition board : design, building and tests in the UK
 - 2. Thermal and Mechanical studies
 - 3. MAPS design
- III. UK-specifc Algorithm development
 - 1. Pandora PFA
 - 2. Mokka/Geant4
 - 3. ZHH analysis to characterize/compare detector performances
- IV. Conclusion

The data taken

All what was collected in the ECAL run: 60 GeV secondary beam, tested e 10-45 GeV and π 30-80 GeV.

CERF period: parasitic muon high intensity, wide distribution

→ Very important for calibration !!!

Combined run, goal: ECAL EM program

- e 10-45 GeV, from 50 GeV beam, with 0,10,20,30 deg
- small samples of π 30-80 GeV too large distance ECAL-AHCAL

AHCAL stand alone, ECAL removed

- 1 day @ 10 GeV secondary beam tested π / e 6.10.15.20 GeV
- 3 days @ 50 GeV secondary beam e 10-45 GeV and p 30-80 GeV

!!! large fraction of time invested in beam tuning !!!

→ 3 additional days "courtesy" of ATLAS: AHCAL and TCMT out of beam line, ECAL re-installed for high statistics low energy runs (thanks to all voluntary shifters)

A technical installation

DAQ

Paul Dauncey, IC London

- SCSI cables for all detectors delivered in time, working fine
- 5 (ECAL) + 4 (AHCAL+TCMT+veto+trigger) CRC boards used
- Tuning finished before data taking started
- All beam component successfully integrated (Cherenkov, MWPC, veto, triggers)
- Excellent performance thereafter: 120 Hz max average rate, ~500 Hz peak rate in spill
- Stable operation, continuous running w/o failures
- Data taking inefficiency related to:
 - human mistakes in DAQ handling (selection of triggers, start up procedure)
 - missing communication to beam database
- Special development for TCMT achieved in time before operation, required very complex firmware update (one CRC only)
 - → In general: DAQ has fulfilled all expectations!!!

Data transfer and conversion

- High speed data transfer possible (1 Gbit switch to CERN, 20Mbyte/s to DESY)
- Data stored to DESY dCache (extra disk space available for CALICE)
- Conversion to LCIO smooth, data available for analysis few hours after data taking

A few plots of real data taken at CERN

800

LCUK, Durham

Anne-Marie Magnan, IC London

HCAL

1000 1200 1400 1600 1800 2000

Testbeam monitoring

George Mavromanolakis, Cambridge

a self-contained, light and robust application to do reconstruction and first level analysis for comprehensive detector and data quality monitoring during or after data taking

→ Really useful to have immediate feedback of data quality.

Linearity + resolution in DESY/CERN data

David Ward, Cambridge

Testbeam plans

Next run planned for October 11th – 24th :

• Expect to have another 30 M events.

•ECAL and AHCAL will be complete by May → tests at CERN in May-Jul next year.

Key dates for beam-tests CERN 2007: Start East Hall: May 2nd 2007 Start North Area (physics): May 25th 2007 End of PS/SPS physics: Nov 12th 2007

•When DHCAL prototype is ready → tests at FNAL.

FERMILAB planned for end 2007-early 2008. No more details for now on.

Plans: Lower energy hadrons + DHCAL running.

- I. Summary of DESY and CERN testbeam 2006 (still ongoing at CERN) and plans for next year
- II. Overview and last year progress and plans for both ECAL concepts
 - 1. Data acquisition board : design, building and tests in the UK
 - 2. Thermal and Mechanical studies
 - 3. MAPS design
- III. UK-specifc Algorithm development
 - 1. Pandora PFA
 - 2. Mokka/Geant4
 - 3. ZHH analysis to characterize/compare detector performances
- IV. Conclusion

DAQ for the "EUDET" ECAL module

Matthew Wing, UCL

- Using next generation ASIC: collaboration with french labs.
- Whole module : one 1.5m long PCB to test the transmission of signal and the mechanical requirements.
 - + 29 other layers smaller to have full depth to contain the showers.
- Concept for the new slab:

5 PCBs stitched together

ASIC testing and model slab

Maurice Goodrick & Bart Hommels, Cambridge

Plan

- emulate multiple VFE chips on long PCBs
- study transmission behaviour: noise, crosstalk, etc.
- optimise VFE PCB with respect to data rate requirements

Needs

- segmented test slab PCBs
- FPGAs emulating VFE chips, "pVFEs"
- FE boards for distribution and reception of clock, controls, data, etc.
- → these studies will contribute to ASIC and PCB design for EUDET (and final) modules.

Board development

Maurice Goodrick & Bart Hommels, Cambridge

Board design and layout

- Assumed: 5 × 5mm² pads, 72 channels/ASIC!
- 1 ASIC covers 6×12 pads, or 3×6 cm²
- Traces for various clock distribution and/or readout architectures incorporated
- Row of 4 FPGAs per board, every FPGA mimics 2 VFE chips
- Schematics finished, layout almost finished.

Connection and off-detector receiver

Matthew Warren, UCL Marc Kelly, Manchester

PCI cards specifications: Simpler to just buy the cards!!

Bought PCIe cards from PLD applications (http://www.plda.com/):

• model: XpressFX100

• FPGA: Xilinx Virtex4 FX100

• bus: PCIexpress x8 lane.

• Gbit optical and copper transceivers

→ Hosted in computers in labs.

→ Currently working on firmware and test software

Off-detector receiver PCI card

Off-detector electronics

Thermal studies in ECAL Barrel

David Bailey, Manchester

- A CALICE module will dissipate at least 300 W → active cooling required
- Obvious places: this end. Problem: already busy with slab readout.

• Alternatively: this end. Disadvantage: dead area.

• Or this face.

Disadvantage:

poor conductivity in the perpendicular direction.

RESULTS:

→ Assuming a module is 26 cells long:

 $\Delta T_{\text{bothEnds}} = 10.3 \, ^{\circ}\text{C}$ only one end cooled $\Delta T_{\text{middleEnds}} = 2.6 \, ^{\circ}\text{C}$ both ends cooled

- → Manchester will build a cooling test setup to verify simulation
- → environment for active cooling tests

MAPS Sensor developments and 3D simulation

• <u>Sensor studies</u>: expect to have a test structure by March 2007, with several designs for comparison of performances.

Ex: read out several pixels at the same time

- → minimisation of dead area.
- <u>Simulation studies</u>: developed in parallel to check the actual charges collected by the diodes in function of the diodes size, distance between them, position of the central NWELL.

Exemple of a MIP crossing the central NWELL:

Renato Turchetta & Jamie Crooks, RAL M.Tyndel & E.G.Villani, RAL

Sensor simulation: 2D

Results obtained in 2D simulation, varying the diodes size and the distance between them for example.

LCUK, Durham

Anne-Marie Magnan, IC London

MC studies

MAPS implemented in Mokka

Yoshi Mikami & Bradley Hopkinson, Birmingham AMM, ICL

Work on clustering started @ Birmingham:
Analogue Si
MAPS geom.

#Cell_hits/Event with cell size dependence 0.2 0.4 0.6 Cell size mm

→ Still a lot to understand! But still on time.

- I. Summary of DESY and CERN testbeam 2006 (still ongoing at CERN) and plans for next year
- II. Overview and last year progress and plans for both ECAL concepts
 - 1. Data acquisition board : design, building and tests in the UK
 - 2. Thermal and Mechanical studies
 - 3. MAPS design
- III. UK-specifc Algorithm development and physics analysis
 - 1. Pandora PFA
 - 2. Mokka/Geant4
 - 3. ZHH analysis to characterize/compare detector performances
- IV. Conclusion

Pandora PFA

Mark Thomson, Cambridge

Overview:

- ★Preparation
 - **★Isolation cuts, hit ordering, track quality**
- *Initial clustering to form ProtoClusters
 - **★ProtoClusters** are heavyweight objects:
 - * much more than a collection of hits
 - ★ know how to grow (configured when created)
 - ★ information about shape, direction, isPhoton,...
 - ★ can be configured to fragment tracks...
 - *+much more (not all used)...
- *Cluster association/merging
 - **★ Tight Topological linking of clusters**
 - ★ Looser merging of clusters
 - **★** Track-driven merging
- **★PFA**
 - **★Final track-cluster matching**

Mokka/geant4 developments

Fabrizio Salvatore, RHUL

Summary

- New version of Mokka (06-02) will be available soon, with several important improvements and new detectors for the simulation of Desy and CERN test beam data
 - □ Ready to start producing MC events to compare with data taken this summer
- New Mokka WEB page, will provide up-todate information on all detector models, software, database, etc...
 - □ Join in to help us improving it!

ZHH Analysis as benchmark

• Pandora Pythia:

- M(Higgs) = 120 GeV
- Electron polarization 80%
- Positron polarization 0%
- $E_{CM} = 500 \text{ GeV}$
- LDC00:
 - RPC Hcal
 - TPC has 200 layers
 - ECal is 30+10 layers
- LDC01: smaller radius than LDC00
 - RPC Hcal
 - TPC has 185 layers
 - ECal is 20+10 layers

Michele Faucci-Gianelli, Fabrizio Salvatore & Mike Green, RHUL

- Marlin 0.9.4 with MarlinReco 0.2
 - Processors used:
 - VTXDigi
 - FTDDigi
 - SimpleCaloDigi
 - TPCDigi
 - CurlKiller
 - LEPTracking
 - TrackwiseClustering | PandoraWolf | PFA
 - PairSelector
 - SatoruJetFinder
 - BosonSelector
 - MyROOTProcessor & analysis

Z/W separation

WOLF
+
TrackWise Clustering

Blue is WW Red is ZZ Michele Faucci-Gianelli, Fabrizio Salvatore & Mike Green, RHUL

PandoraPFA Very Preliminary

Conclusion

- CERN testbeam successfull until now! Real conclusion after October period. But lots of data already available for calibration and preliminary studies.
- Getting prepared for the whole "EUDET" module: lots of progress from UK groups on the DAQ.
- MAPS design: UK-exclusive for now on !! Sensor will be ready for testing in march 2007. Simulation still needs to include realistic digitisation with input from sensor simulation @RAL.
- 2 analyses as detector Benchmark are making good progress: ZHH (RHUL) and WWυυ/ZZυυ (Cambridge)
 - → Stay tuned, a lot more progress are expected in the coming year !!

Thank you for your attention!

backup

Summary of data taking CERN first and second period (july/August 2006)

Some numbers:

Total data taking time (including first "ECAL period") = 11 days people on shift ~20 (~30 including ECAL period) beam duty cycle (during running time) ~ 60% detector up time > 90% (including ECAL + AHCAL + TCMC + DAQ) Some comments:

- + very nice experience of cooperation within the collaboration
- + the detector is robust and reliable
- Beam tuning and beam quality understanding

The Beam Line

- 7 main dipoles + quadrupoles + trimmers + collimators to focus the beam on our detector → our responsibility to do it right !!!

- Two main modes of operation:

pion: no secondary target, Pb absorber (365 m)* to filter electrons

possible energies ~ E $_{\text{secondary beam}}$ +/- $E_{\text{sb}}/2$

rates 80-120 Hz

electron: 3 mm Pb target (126 m)*, no absorber

possible energies ~ E _{secondary beam} – N GeV

rates 10-100 Hz

In both cases: relatively pure beam

*H6B experiment at ~ 540 m

Some event displays

Multiparticle event : 2 electrons + 1 pion ??

One pion event

First look at DATA/MC comparison : Separation of junk from signal?

David Ward, Cambridge

3 GeV e-

Next generation of Si-W prototype

Next generation ASIC : ILC_PHY5 LPC/LAL/LLR/UCL/ICL

Paul Dauncey, IC London LAL & LLR, Paris

Requirements for ILC PHY5

- Designed for 5*5 mm² pads
- 72 channels
- Detector AC/DC coupled
- Auto-trigger
- 2 gains / 12 bit ADC → 2000 MIP Energy resolution :4.89 GeV (cf JCB)
- 24 bits Bunch Crossing ID
- Internal SRAM with data formatting
- Output & control with daisy-chain
- Power pulsing, programmable stage by stage
- Calibration injection capacitance
- Embedded bandgap for references
- Embedded DAC for trig threshold
- Compatible with physics proto DAQ
 - Serial analogue output
 - External "force trigger"
- Probe bus for debug

ILC_PHY4 (2005)

HaRD_ROC (2006)

Conclusion:

- Work is going on
- Complexity increases quickly
- Collaboration has to organize its effort on electronic/microelectronic to achieve the outstanding expectations within the very tight schedule

Time considerations

TB structure: When spill:

Acquisition	A/D conv.	DAQ	Acquisition	A/D conv.	DAQ
1ms (.5%)	.5ms (.25%)	.5ms (.25%)	1ms (.5%)	.5ms (.25%)	.5ms (.25%)

Full acquisition cycle

When no spill:

IDLE MODE

Thermal studies of ECAL

Temperature map

Here is a typical temperature map from a simulation of three adjacent cells, cooled at the top end.

In this simulation heat is input to the cells at the rate of 1 W per cell, whereas the power expected in CALICE is 0.015 W/cell, so temperatures should be scaled accordingly.

David Bailey, CALICE Meeting, Montreal, May 2006