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Using pixels in calorimeters?

Determine energy by counting tracks in a

shower rather than measuring the pulse

heights produced in the samples.

- Swap ~0.5x0.5 cm? Si pads for pixels

 at most one particle per pixel if linearity is to
be preserved T

« binary readout: 1 if input pulse exceeds a A
comparator threshold. >

At 500 GeV, shower core density is S

~100/mm? (1 particle per 100 x 100 um?)

— pixel size = 50 x 50 um? ensures a low
probability of >1 hit in pixel.
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>1 particle/

General advantages with MAPS pixel
100um

(Monolithic Active Pixel Sensors):
readout electronics is an integral part of ]

. . 100 200 300 400 500 600
sensor — high density — excellent Incoming photon energy (GeV)
for sampling calorimeters? JAW; ECFA 2008, WARSAW 2

E WQ? n

Veighted no. pixels/event
hted number of hits / event



MAPS charge collection

NWELL  SUB NMOS PMOS WELL
DIODE ~ CONN TRANSISTOR TRANSISTOR CONN

+ Use 0.18uum CMOS technology;

 Readout electronics on surface of
pixel;

EPITAXIAL LAYER « 12 micron epitaxial layer (ionisation
deposited here is collected);

SUBSTRATE » 300 micron substrate (mechanical
support only; ionisation here is not
collected);

» Electrons collected by N wells
(diodes AND N wells beneath
PMOQOS electronics).

w v U9 O @ @
NWELL

DEEP PWELL

PWELL

Avoid absorption in N wells by surrounding them with a deep P well (which
reflects electrons back into the epitaxial layer)

INMAPS process
Charge collected by diffusion (not drift)
Depletion layers near diodes are tiny (1.8V applied — few microns) 3



Simulating the deep P well

Central N well
absorbs half charge
leading to

difficult operation;
serious degradation

Deep P well gives
reasonable range of
threshold.

Clear advantage in
Implementing deep P
well

BUT novel process
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Each with:

All pixels contain 4
collection diodes,
each 1.8micron
diameter and located
8.5 microns from

corner along a pink = nwell
diagonal (absorbing charge)
preShape RC grey = deep p-well
gh?plng; retcrg\t/)ers added to block the
efore next hi .
charge absorption
preSample (self reset (INMAPS process)

pefore next hit)

two variants of Capas
and same comparator
logic

Mask bit

4 Trim bits

Sampler
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Shaper

ASIC 1.0 TTT e

168 x 168 pixels
10mm x 10mm 12164 D)|(O))| capa2

. PIXELS
79.4 mm2 sensitive area

of which 11.1% is dead \ DATAMUX
(logic etc)

ordered April 2007; s | tooic =l . | | a2
delivered July 2007.

As a binary device, we : ;
can investigate noise, VVVV AAAA  loas Versc v
pedeStaI etc by carrying DATAREAD  CONTROL |
out threshold scans:

l.e. varying the global
comparator threshold
and counting the
number of hits per pixel.
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Threshold scans of individual pixels

| Column 14, row 6, Number of words vs Threshold | SensortBecumntroutl nfretie | Column 14, row 114, Number of words vs Threshold | =~ preereimmmnese
Entries 400 Entries 400
= Mean -30.97 45 Mean 30.28
B } RMS 5.277 “E } RMS 5,968
25 -
B 4 }
| - }
i 3.5
2 | | - }
B 3
1.5 | 2.5F |
B - i
- 2
11— =
- I 1.5 { *
- 1= |
0.5 __ |_ —
B * 0.5F by
g o -
u—c_l||||||||J||‘\|||||||||||||||||||||||||||| 0:_"""l""ld""tlllllll|'III|IIII|IIII|II
=200 100 0 100 200 300 400 500 200 100 0 100 200 300 400 500
Sensor 18, Threshold Sensor 18, Threshold

« Means significantly different but RMS is similar
 RMS of theshold peak == Noise
« 5 Threshold Units =% 40 electrons — as expected
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Crosstalk between pixels

\ Threshold Scans for Column 14 |
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Scan one
pixel at a

time; all

Entries 67200
Meanx  -1.35
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 Effect of all pixels (other than the one being scanned) is
to increase the general noise around zero.
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Trimming the thresholds

Histogram showing the locations of threshold scan peaks for different pixels | PeakHst ‘ Histogram showing the locations of threshold scan peaks for different pixels | PeakHst
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« Trimming reduces the range of pixel thresholds but not enough. (The
spread in thresholds is still much larger than the width of a typical
threshold scan).

« More dynamic range is required (i.e. 6 trim bits) in order to bring all
thresholds into close proximity.

 Difficult to find a global threshold to allow reliable efficiency
measurements === complicated test beam analysis



Beam tests at DESY

» < 0one week in mid-December 2007; very
tight schedule; last opportunity before long
shutdown.

 Electron beam: 2-6 GeV

» 4 sensors plus up to 10 absorber sheets
(W; 3mm) all aligned precisely

» Signals from small scintillators upstream
and downstream recorded also.
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Test beam at DESY

PMT Finger

Sensor Board

MAPS Chip

A Y
Schs & Tachrslogy Facilies Counc T = e -
W Rutherford Appleton Laboratory 8 Marcel Stanitzki
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Test beam results: tracks seen

Observe strong correlations in . omacoonse

x and y in adjacent planes
Tracks picked out by event

60—

display o

Due to large natural spread in =« |
thresholds, it was not feasible .

20~

to trim the pixels to a uniform ., -

response IE i RN

4 [ 0 0
50 60 70 80

as the global threshold was Feentiiay)
set too high (to keep the hit = =
rate reasonable), the i
estimated efficiency is very o BN =T
low HE
With all pixels set with the N
appropriate trims, the ~
efficiency is expected to be DA o £

high

JAW; ECFA 2008, WARSAW
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MAPS - Beam Test: tracking efficiencies,

12



Other tests (ongoing)

« Radioactive sources : Fe-55 (5 keV X-rays) and
Sr-90 (>2MeV electrons)
—> uniformity (e.g. of efficiency vs threshold)
over the whole sensor; uniformity of threshold
and gain.
« Cosmic rays —» absolute mip calibration.
« Lasers —=» uniformity of gain from pixel to
pixel; charge diffusion and crosstalk;
comparison with simulation.

JAW; ECFA 2008, WARSAW

13



Simulation of charge diffusion

[l
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Cell size: 50 x 50 pimf

Whole 3*3 array with neighbouring
cells is simulated, and the initial MIP Example of pessimistic scenario

deposit is inputted on 21 points of a central N-well eating half of
(sufficient to cover the whole pixel by the charge

symmetry)
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Charge sharing between pixels

 Infra red laser (spot size: few microns) illuminates grid of
21 points (5 micron spacing) in the central pixel of a set of
3 x 3 pixels. [Same grid as used by simulation, discussed
earlier].

« For each position of the laser, take threshold scans of the

3x3 pixels.

0
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Charge diffusion: summing 3x3 pixels
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» Excellent agreement between data and simulation both with and
without the deep P well.

*With no deep P well, the diodes see signal predominantly from locations

nearest to them (i.e. 9,13,14,18, 19, 20 — all near a group of diodes and

furthest from the N well.



Charge sharing: deep P well
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« Reasonable qualitative agreement; e.g. cell 4 has peaks at
3,6,10,15 (all locations closest to the cell)

« Cells 2, 3, 5 and 6 all have the same response at location 20
since this point is on the corner of the 4 cells, 17



Charge sharing: no deep P well
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* Much greater variation with position of laser spot
as ionisation is lost unless near a diode.

JAW; ECFA 2008, WARSAW 18



Conclusions

» Reasonable agreement between data and
simulation — gives confidence In

predicted performance
» Sensors are being tested at three labs
— gaining experience with binary system
—> [INMAPS sensors look encouraging
—> way forward has become clear

JAW; ECFA 2008, WARSAW 19



Next steps

 Design ASIC 1.1 :

1. dispense with presamplers; preshapers only
but still with the two capacitance variants

2. Implement a 6 bit trim (though space is
tight on pixel)

3. Adjust the power distribution to reduce
crosstalk,

4. Fix three minor faults in original version

Submit to foundry by mid-July; expect to
receive chips by August/September 2008.

JAW; ECFA 2008, WARSAW
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Backup slides
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Simulation of charge diffusion

[l

Central N well
~N u 50mm [

150

Cell size: 50 x 50 pm?

Whole 3*3 array with neighbouring

cells is simulated, and the initial MIP Example of pessimistic scenario
deposit is inputted on 21 points

of a central N-well eating half of
(sufficient to cover the whole pixel by the charge
symmetry)
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Sensors in test beam

|

|
DATA MUX

=== Local X
| Local Y

« Beam traverses triggering scints, then 2 + 2 preshapers
and presamplers

« mixture of shapers and samplers

— trimming to a consistent threshold very difficult
JAW; ECFA 2008, WARSAW 24



Individual pixel threshold scans
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Thresholds for groups of pixels

| Threshold Scans for Row 126 |

| Threshold Scans for Column 42 |
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« We see considerable variation in position of the threshold; also a
marked difference between shapers and samplers.

« Since a global threshold is applied to all pixels and each has its own
distinct threshold, a 4 bit trim is provided for each pixel to bring its
threshold into line.
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